设∫0πf(x)+f’’(x)]sinxdx=4,f(0)=1,则f(π)=( ).

admin2016-12-09  10

问题 设∫0πf(x)+f’’(x)]sinxdx=4,f(0)=1,则f(π)=(  ).

选项 A、-3
B、0
C、2
D、3

答案D

解析0πf(x)+f’’(x)]sinxdx—∫0πf(x)sinxdx+∫0πf’’(x)sinxdx
=∫0πf(x)sinxdx+∫0πsinxdf’(x)
=∫0πf(x)sinxdx+sinxf’(x)|0π-∫0πf’(x)cosxdx
=∫0πf(x)sinxdx-∫0πcosxdf(x)
=∫0πf(x)sinxdx-[f(x)cosx|0π+∫0πf(x)sinxdx]
=f(0)cos0一f(π)cosπ=f(0)+f(π)=4,
即    f(π)=4一f(0)=4—1=3.
仅D入选。
转载请注明原文地址:https://kaotiyun.com/show/VebD777K
0

相关试题推荐
最新回复(0)