首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
已知α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
admin
2019-02-01
76
问题
已知
α
1
是矩阵A属于特征值λ=2的特征向量,α
2
,α
3
是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是 ( )
选项
A、[α
1
,一α
2
,α
3
]
B、[α
1
,α
2
+α
3
,α
2
—2α
3
]
C、[α
1
,α
3
,α
2
]
D、[α
1
+α
2
,α
1
一α
2
,α
3
]
答案
D
解析
若
P=[α
1
,α
2
,α
3
],则有AP=PA,即
即 [Aα
1
,Aα
2
,Aα
3
]=[α
1
1
,
2
2
,α
3
α
3
].
可见α
i
是矩阵A属于特征值α
i
(i=1,2,3)的特征向量,又因矩阵P可逆,因此,
1
,
2
,α
3
线性无关.
若α是属于特征值λ的特征向量,则一α仍是属于特征值λ的特征向量,故(A)正确.
若α,β是属于特征值λ的特征向量,则k
1
α+k
2
β仍是属于特征值λ的特征向量.本题中,α
2
,α
3
是属于λ=6的线性无关的特征向量,故α
2
+α
3
,α
2
一2α
3
仍是λ=6的特征向量,并且α
2
+α
3
,α
2
一2α
3
线性无关,故(B)正确.
关于(C),因为α
2
,α
3
均是λ=6的特征向量,所以α
2
,α
3
谁在前谁在后均正确.即(C)正确.
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
一α
2
不再是矩阵A的特征向量,故(D)错误.
转载请注明原文地址:https://kaotiyun.com/show/Vgj4777K
0
考研数学二
相关试题推荐
设A,B都是n阶对称阵,已知E+AB不可逆,证明:E+BA也不可逆.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:(1)A2;(2)A的特征值和特征向量;(3)A能否相似于对角阵,说明理由.
设A=,求实对称矩阵B,使A=B2.
设y1=ex,y2=x2为某二阶线性齐次微分方程的两个特解,则该微分方程为____________.
设函数f’(x)在[a,b]上连续,且f(a)=0,试证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值
设u=f(x,y,z)有连续的偏导数,y=y(z),z=z(x)分别由方程exy-y=0与ez-xz=0确定,求
设有微分方程y′-2y=φ(χ),其中φ(χ)=,试求:在(-∞,+∞)内的连续函数y=y(χ),使之在(-∞,1)和(1,+∞)内都满足所给方程,且满足条件y(0)=0.
设当x→x0时,α(x),β(x)都是无穷小(β(x)≠0),则当x→x0时,下列表达式中不一定为无穷小的是()
设x→0时,(1+sinx)x一1是比xtanxn低阶的无穷小,而xtanxn是比(esin2x一1)ln(1+x2)低阶的无穷小,则正整数n等于()
随机试题
A.大白肾B.大红肾C.白斑肾D.皱缩肾E.花斑肾慢性肾小球肾炎眼观为()。
试卷附图中,图示中药为半夏的是()。
制备一组马歇尔试件的个数一般为()。
价值工程中的方案评价应包括()。
法定解除合同的条件包括( )。
甲会计师事务所的A和B注册会计师接受委派,对乙公司2008年度财务报表进行审计。确定财务报表可容忍错报为10000元。在实质性程序中A和B注册会计师运用统计抽样,发现一些样本存在误差,在分析样本误差时,履行了以下程序:(1)对某项目无法或没有执行替
古代“六艺”(礼、乐、射、御、书、数)中的“御”是指()。
市场出清
《刑法》第234条规定:“故意伤害他人身体的,处三年以下有期徒刑、拘役或者管制。犯前款罪,致人重伤的,处三年以上十年以下有期徒刑;致人死亡或者以特别残忍手段致人重伤造成严重残疾的,处十年以上有期徒刑、无期徒刑或者死刑。本法另有规定的,依照规定。”
Mosteconomistsbelievethatadvertisinghasapositiveimpactontheeconomybecauseitstimulatesdemandforproductsandserv
最新回复
(
0
)