首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
admin
2020-03-15
33
问题
设α=(1,2,3,4)
T
,β=(3,-2,-1,1)
T
,A=αβ
T
.
(I)求A的特征值、特征向量;
(Ⅱ)问A能否相似于对角矩阵?说明理由.
选项
答案
法一 (I)[*] 故A有特征值λ=0(四重根). 当λ=0时,(λE-A)x=0即Ax=0,其同解方程为3x
1
-2x
2
-x
3
﹢x
4
=0. 解得对应的线性无关的特征向量为 ξ
1
=(2,3,0,0)
T
,ξ
2
=(1,0,3,0)
T
,ξ
3
=(1,0,0,-3)
T
. A的对应于λ=0的全体特征向量为k
1
ξ
1
﹢k
2
ξ
2
﹢k
3
ξ
3
,其中k
1
,k
2
,k
3
为不全为零的任意常数. (Ⅱ)因r(A)=r(αβ
T
)≤r(α)=1(α≠0),A≠O,故r(A)=1. λ=0为四重特征值,线性无关的特征向量只有3个,故A不能相似于对角矩阵. 法二 (I)r(A)=r(αβ
T
)≤r(α)=1.又A≠O,故r(A)=1,|A |=0. 故A有特征值λ=0.对应的特征向量满足(OE-A)x=O,即Ax=αβ
T
=0,其同解方程为 3x
1
-2x
2
-x
3
﹢
4
=0. 故知λ=0至少是A的三重特征值,设第4个特征值为λ
4
. 由[*]=3-4-3﹢4=0,得λ
4
=0,故λ=0是四重特征值.对应特征向量的求法同法一. (Ⅱ)由于λ=0是四重特征值,但对应的线性无关特征向量只有3个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/VpA4777K
0
考研数学二
相关试题推荐
已知n维列向量组(Ⅰ):α1,α2,…,αr(r<n)线性无关,则n维列向量组(Ⅱ):β1,β2,…,βr线性无关的充分必要条件为()
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=若α0=,
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为()
[2017年]设数列{xn}收敛,则().
[2014年]设函数f(u)二阶连续可导,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f′(0)=0,求f(u)的表达式.
(09)设(Ⅰ)求满足Aξ2=ξ1,Aξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(99年)设f(x)是区间[0,+∞)上单调减少且非负的连续函数,an==∫1nf(x)dx(n=1,2,…),证明数列{an}的极限存在.
设A=E一ξξT,ξ是非零列向量,证明:(1)A2=A的充要条件是ξTξ=1;(2)当ξTξ=1时,A不可逆.
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值。
随机试题
以下何种措施不利于改善遵医行为
男,52岁,因进行性吞咽困难,经多项检查确诊为食管癌,拟行根治治术。患者术前准备不必须
按《建筑桩基技术规范》(JGJ94—94)取承台及其上土的平均重度,则桩顶竖向力设计值最小与下列______项值接近。角柱向上冲切时承台受冲切承载力与下列______项值接近。
投资建设项目的特点,可以归纳为()。
根据《生产安全事故应急预案管理办法》,生产经营单位应急预案分为()。
某投资人投资1万元申购某基金,申购费率为1.5%,假定申购当日基金份额净值为1.0500元,则其可得到的申购份额为()。
我国《证券法》规定,证券公司的组织形式为有限责任公司、股份有限公司以及合伙形式。()
为了提高党政基层机构的执政能力,某市市委为200多名后备干部举办了一次培训。在培训班上,从事领导科学研究的李教授为学员们作了专场报告,系统地介绍了领导行为理论,这些理论既包括传统的特质理论,又包括现代备受欢迎的魅力型领导理论、路径—目标理论以及领导—成员交
2010年4月28日,温家宝总理主持召开国务院常务会议。会议指出,“十一五”前4年,经过各地区、各部门共同努力,节能减排工作取得重要进展,全国单位国内生产总值能耗累计下降14.38%,但与“十一五”内20%左右的目标仍有较大差距,节能减排形势十分严峻。为确
一个长方形(如图1-1),被两条直线分成四个长方形,其中三个的面积分别是20亩、25亩和30亩,问另一个(图中阴影部分)长方形的面积是多少亩?()
最新回复
(
0
)