首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
admin
2020-03-15
59
问题
设α=(1,2,3,4)
T
,β=(3,-2,-1,1)
T
,A=αβ
T
.
(I)求A的特征值、特征向量;
(Ⅱ)问A能否相似于对角矩阵?说明理由.
选项
答案
法一 (I)[*] 故A有特征值λ=0(四重根). 当λ=0时,(λE-A)x=0即Ax=0,其同解方程为3x
1
-2x
2
-x
3
﹢x
4
=0. 解得对应的线性无关的特征向量为 ξ
1
=(2,3,0,0)
T
,ξ
2
=(1,0,3,0)
T
,ξ
3
=(1,0,0,-3)
T
. A的对应于λ=0的全体特征向量为k
1
ξ
1
﹢k
2
ξ
2
﹢k
3
ξ
3
,其中k
1
,k
2
,k
3
为不全为零的任意常数. (Ⅱ)因r(A)=r(αβ
T
)≤r(α)=1(α≠0),A≠O,故r(A)=1. λ=0为四重特征值,线性无关的特征向量只有3个,故A不能相似于对角矩阵. 法二 (I)r(A)=r(αβ
T
)≤r(α)=1.又A≠O,故r(A)=1,|A |=0. 故A有特征值λ=0.对应的特征向量满足(OE-A)x=O,即Ax=αβ
T
=0,其同解方程为 3x
1
-2x
2
-x
3
﹢
4
=0. 故知λ=0至少是A的三重特征值,设第4个特征值为λ
4
. 由[*]=3-4-3﹢4=0,得λ
4
=0,故λ=0是四重特征值.对应特征向量的求法同法一. (Ⅱ)由于λ=0是四重特征值,但对应的线性无关特征向量只有3个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/VpA4777K
0
考研数学二
相关试题推荐
设R3中的两个基α1,α2,α3和β1,β2,β3之间满足β1=α1—α2,β2=α2—α3,β3=2α3,向量β在基α1,α2,α3下的坐标为x=(2,—1,3)T,则β在基β1,β2,β3下的坐标为_________。
设线性方程组与方程x1+2x2+x3=a—1(2)有公共解,求a的值及所有公共解。
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,—2)T,则方程组Ax=b的通解x=()
[2008年]求极限[*]
[2004年]设f(x)=∫xx+π/2∣sint∣dt.证明f(x)是以π为周期的周期函数.
[2008年]求函数u=x2+y2+z2在约束条件z=x2+y2和x+y+z=4下的最大值与最小值.
计算定积分
设ATA=E,证明:A的实特征值的绝对值为1.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2。求方程f(x1,x2,x3)=0的解。
随机试题
在石油沥青防腐中,熬制沥青时,应经常搅拌并清除漂浮物。
对于淋巴管及淋巴回流的描述,不正确的是
原核基因表达调控中的诱导现象是指
25岁女性,孕50天行人工流产术,术后14天仍有阴道流血,妇科检查子宫如40天妊娠大小,附件正常。初步考虑的诊断是
7月8日上午,某公司施工人员刘某到现场巡查发现l号机和3号高加汽侧管道底部放水管(属于压力管道)有泄漏,随机向汽机检修班汇报缺陷情况,汽机检修班副班长吴某立即将此情况向汽机检修分部经理和设备部点检员报告,汽机检修分部经理袁某接到报告后,考虑到泄漏点不大,决
在确定企业的收益分配政策时,应当考虑相关因素的影响,其中“资本保全约束”属于()。
形而上学唯物主义物质观的错误在于()。
设X1,X2,…,Xn为来自总体N(μ,σ2)的简单随机样本,样本均值=9.5,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为________。
Theygavea________welcometotheirspecialguest.
Somepeopleseemtohaveaknack(诀窍)forlearninglanguages.Theycanpickupnewvocabulary,masterrulesofgrammar,andlearn
最新回复
(
0
)