首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
admin
2020-03-15
52
问题
设α=(1,2,3,4)
T
,β=(3,-2,-1,1)
T
,A=αβ
T
.
(I)求A的特征值、特征向量;
(Ⅱ)问A能否相似于对角矩阵?说明理由.
选项
答案
法一 (I)[*] 故A有特征值λ=0(四重根). 当λ=0时,(λE-A)x=0即Ax=0,其同解方程为3x
1
-2x
2
-x
3
﹢x
4
=0. 解得对应的线性无关的特征向量为 ξ
1
=(2,3,0,0)
T
,ξ
2
=(1,0,3,0)
T
,ξ
3
=(1,0,0,-3)
T
. A的对应于λ=0的全体特征向量为k
1
ξ
1
﹢k
2
ξ
2
﹢k
3
ξ
3
,其中k
1
,k
2
,k
3
为不全为零的任意常数. (Ⅱ)因r(A)=r(αβ
T
)≤r(α)=1(α≠0),A≠O,故r(A)=1. λ=0为四重特征值,线性无关的特征向量只有3个,故A不能相似于对角矩阵. 法二 (I)r(A)=r(αβ
T
)≤r(α)=1.又A≠O,故r(A)=1,|A |=0. 故A有特征值λ=0.对应的特征向量满足(OE-A)x=O,即Ax=αβ
T
=0,其同解方程为 3x
1
-2x
2
-x
3
﹢
4
=0. 故知λ=0至少是A的三重特征值,设第4个特征值为λ
4
. 由[*]=3-4-3﹢4=0,得λ
4
=0,故λ=0是四重特征值.对应特征向量的求法同法一. (Ⅱ)由于λ=0是四重特征值,但对应的线性无关特征向量只有3个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/VpA4777K
0
考研数学二
相关试题推荐
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值。
设A为n阶实对称矩阵,且A2=A,R(A)=r,则A的全部特征值为_______,行列式|2E—3A|=_______。
已知线性方程组有解(1,—1,1,—1)T。用导出组的基础解系表示通解。
[2005年]设y=(1+sinx)x,则dy∣x=π=_________.
设f(x)在[0,1]上连续且递减,证明:当0<λ<1时,∫01f(x)dx≥λ∫01f(x)dx.
(1999年)设矩阵A=矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,求矩阵X.
(00年)设曲线y=ax2(a>0,x≥0)与y=1一x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求Bx=0的通解。
求极限:
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
随机试题
鼻头干燥色黑如烟煤状多为
A.变量值间呈倍数关系的偏态分布B.表达同质计量资料的对称分布C.偏态分布资料或末端无界的资料,或频数分布不明资料D.表达同质计量资料的偏态分布E.变量值间无信数关系的正态分布
女,9岁,5天前突然右髋疼痛,并有高热。体温5℃,脉搏110次/分,白细胞22×109/L,中性98%.,血沉30mm/第一小时末。右髋关节肿胀,不敢活动,考虑为( )。
滴定分析指示剂有()。
对建设项目试生产与生产运营准备工作的咨询服务内容包括()。
关于建设工程等步距异节奏流水施工特点的说法,正确的是()。
地域管辖包括( )。
促进个体发展从潜在的可能状态转向现实状态的决定性因素是()
对于“既要改善人民生活,又要艰苦奋斗”有几种看法,你认为下列看法哪些是正确的?()
近代沙俄侵占了中国北方和西北方哪些领土?其重大危害是什么?
最新回复
(
0
)