首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
设α=(1,2,3,4)T,β=(3,-2,-1,1)T,A=αβT. (I)求A的特征值、特征向量; (Ⅱ)问A能否相似于对角矩阵?说明理由.
admin
2020-03-15
84
问题
设α=(1,2,3,4)
T
,β=(3,-2,-1,1)
T
,A=αβ
T
.
(I)求A的特征值、特征向量;
(Ⅱ)问A能否相似于对角矩阵?说明理由.
选项
答案
法一 (I)[*] 故A有特征值λ=0(四重根). 当λ=0时,(λE-A)x=0即Ax=0,其同解方程为3x
1
-2x
2
-x
3
﹢x
4
=0. 解得对应的线性无关的特征向量为 ξ
1
=(2,3,0,0)
T
,ξ
2
=(1,0,3,0)
T
,ξ
3
=(1,0,0,-3)
T
. A的对应于λ=0的全体特征向量为k
1
ξ
1
﹢k
2
ξ
2
﹢k
3
ξ
3
,其中k
1
,k
2
,k
3
为不全为零的任意常数. (Ⅱ)因r(A)=r(αβ
T
)≤r(α)=1(α≠0),A≠O,故r(A)=1. λ=0为四重特征值,线性无关的特征向量只有3个,故A不能相似于对角矩阵. 法二 (I)r(A)=r(αβ
T
)≤r(α)=1.又A≠O,故r(A)=1,|A |=0. 故A有特征值λ=0.对应的特征向量满足(OE-A)x=O,即Ax=αβ
T
=0,其同解方程为 3x
1
-2x
2
-x
3
﹢
4
=0. 故知λ=0至少是A的三重特征值,设第4个特征值为λ
4
. 由[*]=3-4-3﹢4=0,得λ
4
=0,故λ=0是四重特征值.对应特征向量的求法同法一. (Ⅱ)由于λ=0是四重特征值,但对应的线性无关特征向量只有3个,故A不能相似于对角矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/VpA4777K
0
考研数学二
相关试题推荐
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如下图所示,则A的正特征值的个数为()
设A为3阶实对称矩阵,A的秩为2,且求矩阵A。
某试验性生产线每年一月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由新招收的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年一月份统计的熟练工和非熟练工所占百分比分别为xn和yn,记成αn=求αn+1
[2008年]设函数f(x)=sinx,则f(x)有().
[2006年]设函数y=y(x)由方程y=1一xey确定,则=__________.
[2018年]已知曲线L:y=x2(x≥0),点0(0,0),点A(0,1).P是L上的动点,S是直线OA与直线AP及曲线L所围图形的面积.若P运动到点(3,4)时沿x轴正向的速度是4,求此时S关于时间t的变化率.
(2004年试题,三(8))设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解
设和S2分别是来自正态总体N(0,σ2)的样本均值和样本方差,样本容量为n,判断所服从的概率分布.
设连续函数f(x)满足:∫01[f(x)+xf(xt)]dt与x无关,求f(x).
设求f(x)的间断点,并说明间断点的类型.
随机试题
AnoldIndianstorysaysthatthegameofchess(国际象棋)wasinventedbySissaBen,PrimeMinisterofKingShirham.Assoonasthe
Ⅱ型呼吸衰竭应给予吸氧的浓J蔓是
63岁妇女出现血性白带,除生殖系统恶性肿瘤外,考虑有哪些疾病可能
怀疑再生障碍性贫血的老年患者行穿刺的最佳部位是
A.大黄B.火麻仁C.京大戟D.巴豆E.芫花治疗寒积便秘,宜用()
某公司从一家跨国公司购进一套生产速溶咖啡的技术资料,因技术力量薄弱,无法生产出合格产品,遂与某科技大学签订技术合同,约定由该公司提供技术开发所需科研经费,付酬10万元,并派5名技校毕业生协助参与开发工作,主要是整理资料,购买器材等,但对开发出的成果如何申请
素质教育是指一种以提高受教育者诸方面素质为目标的教育模式,它重视人的()。
根据以下资料。回答下列题。2011年,我国能源生产总量达到31.8亿吨标准煤,是世界第一大能源生产国。其中,原煤产量35.2亿吨,原油产量稳定在2亿吨,成品油产量2.7亿吨。天然气产量快速增长,达到1031亿立方米。电力装机容量10.6亿千瓦。年
______foreverarethedays______Iwasyoung.
Splittingdinnercheckscancauseasplittingheadache,evenwhenthedinersaremathematicsmajors.Threecomputerscience【B1】_
最新回复
(
0
)