首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T. (1)求(Ⅰ)的一个基础解系; (2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求
admin
2019-03-21
55
问题
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为A=
(Ⅱ)的一个基础解系为η
1
=(2,-1,a+2,1)
T
,η
2
=(-1,2,4,a+8)
T
.
(1)求(Ⅰ)的一个基础解系;
(2)口为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解.
选项
答案
(1)把(Ⅰ)的系数矩阵用初等行变换化为简单阶梯形矩阵 [*] 得到(Ⅰ)的同解方程组[*] 对自由未知量χ
3
,χ
4
赋值,得(Ⅰ)的基础解系γ
1
=(5,-3,1,0)
T
,γ
3
=(-3,2,0,1)
T
. (2)(Ⅱ)的通解为c
1
η
1
+c
2
η
2
=(2c
1
-c
2
,-c
1
+2c
2
,(a+2)c
1
+4c
2
,c
1
+(a+8)c
2
)
T
.将它代入(Ⅰ),求出为使c
1
η
1
+c
2
η
2
也是(Ⅰ)的解(从而是(Ⅰ)和(Ⅱ)的公共解),c
1
,c
2
应满足的条件为: [*] 于是当a+1≠0时,必须c
1
=c
2
=0,即此时公共解只有零解. 当a+1=0时,对任何c
1
,c
2
,c
1
η
1
+c
2
η
2
都是公共解.从而(Ⅰ),(Ⅱ)有公共非零解.此时它们的公共非零解也就是(Ⅱ)的非零解:c
1
η
1
+c
2
η
2
,c
1
,c
1
不全为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/WLV4777K
0
考研数学二
相关试题推荐
下列函数在点x=0处均不连续,其中点x=0是f(x)的可去间断点的是[].
求下列极限:
设f(x),g(x)在(a,b)内可导,g(x)≠0且.证明:存在常数c,使得f(x)=cg(x),x∈(a,b).
证明:当x>1时
设f(u)(u>0)有连续的二阶导数且z=满足方程=4(x2+y2),求f(u).
已知(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,并且a≠1,求a.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
求微分方程的满足初始条件y(1)=0的特解.
设曲线y=ax2+bx+c过原点,且当0≤x≤1时,y≥0,并与x轴所围成的图形的面积为,试确定a,b,c的值,使该图形绕x轴旋转一周所得立体的体积最小。
随机试题
城镇土地使用税采用_______税率。()
依照我国《公司法》第181条的规定,公司解散的原因有
影响药物作用的因素包括
在牙体预备时未做预防性扩展可能导致的主要不良后果是
患者,女,50岁。多思善虑,心悸胆怯,少寐健忘,面色少华,头晕神疲,食欲不振,舌淡,脉细弱。其证候是
关于肿瘤化疗的护理,以下哪项不正确
某公路工程施工总承包一级企业承包了长2650m的公路隧道施工任务,该隧道穿越的岩层主要由泥岩和砂岩组成。施工中有如下事件发生:事件1:施工单位采用了新奥法施工,复合式衬砌。事件2:项目部相关技术人员认为,新奥法包括全断面法、台
在社会主义经济建设中,积累基金是由非生产性基本建设基金和()构成的。
企业取得应收账款时,有可能借记的科目有()。
()决定个体是否愿意完成某些任务,即决定行为的选择。
最新回复
(
0
)