首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵∧,使得 QTAQ=∧. (3)
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵∧,使得 QTAQ=∧. (3)
admin
2019-02-26
32
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵∧,使得
Q
T
AQ=∧.
(3)求A及[A-(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
c
1
,c
2
不都为0. (2)将α
0
单位化,得η
0
=[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解: 得A=[*] 由Q
-1
AQ=[*] 得A=[*] 于是A-(3/2)E=[*] [A-(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/WQ04777K
0
考研数学一
相关试题推荐
重复独立掷两个均匀的骰子,则两个骰子的点数之和为4的结果出现在它们点数之和为7的结果之前的概率为_____.
dx—dy
设f(x,y)在有界闭区域D={(x,y)|x2+y2≤t2)(t>0)上连续,g(x)有连续的导数,且g(0)=0,g’(0)=a≠0,则=_____.
ex展开成x-3的幂级数为__________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α2+2α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为__________.
计算其中∑为圆柱面x2+y2=1及平面z=x+2,z=0所围立体的表面.
设X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自相互独立的标准正态总体X与Y的简单随机样本,令则D(Z)=_______.
设un(x)满足un’(x)=un(x)+(n=1,2,…),且un(1)=的和函数.
将函数f(x)=展开成x一1的幂级数,并求
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y"+a1(x)y’+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
随机试题
检疫人员进行生猪宰后检疫时,肉眼发现某屠宰猪肉膈肌中有针尖大小的白色小点。低倍镜检查见梭形包囊,囊内有卷曲的虫体。该虫体最可能是()
下列是软膏水溶性基质的是
《检测和校准实验室能力的通用要求》(ISO/IEC17025:2017)适用于所有从事实验室活动的组织,不论其人员数量多少。()
国家实施西部大开发战略的长远目标包括()。
某消防技术服务机构对某建筑设置防烟排烟系统安装质量进行了检查,下列结果中,符合现行国家标准《建筑防烟排烟系统技术标准》的有()。
租船合同中的条件条款是指对实现合同的商业目的有着密切关系的条款。()
装箱单是用以说明货物包装细节的清单,又称为()。
A是4阶实对称矩阵,A2+2A=0,r(A)=3,则A相似于().
試験に合格するには、がんばる________。
PeoplewhospendalotoftimesurfingtheInternetaremorelikelytoshowsignsofdepression,BritishscientistssaidonWedn
最新回复
(
0
)