首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
[2005年] 设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
admin
2019-04-08
65
问题
[2005年] 设有三元方程xy—zlny+e
xz
=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).
选项
A、只能确定一个具有连续偏导数的隐函数z=z(x,y)
B、可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)
C、可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)
D、可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)
答案
D
解析
仅D入选.F(x,y,z)=0,其中F(x,y,z)=xy—zlny+e
xy
一1.显然,F在点(0,1,1)附近对x,y,z均有连续偏导数,且F(0,1,1)=0.
相应的三个偏导数为
F’
z
|
(0,1,1)
=(lny+xe
xz
)|
(0,1,1)
=0,
F’
y
|
(0,1,1)
=
=一1≠0,
F’
x
|
(0,1,1)
=(y+ze
xz
)|
(0,1,1)
=2≠0.
由隐函数存在定理知,在点(0,1,1)的一个邻域内,由方程F(x,y,z)=xy—zlny+e
xz
一1=0可以确定两个具有连续偏导数的隐函数y=y(x,z),x=x(y,z).
转载请注明原文地址:https://kaotiyun.com/show/WR04777K
0
考研数学一
相关试题推荐
A为三阶实对称矩阵,A的秩为2,且(1)求A的特征值与特征向量.(2)求矩阵A.
设f(x)具有连续的二阶导数,且
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得=f(ξ)-ξf′(ξ).
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0.(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E.证明:B的列向量组线性无关.
设二次型f(x1,x2,x3)=ax12+ax22+ax32+2x1x2正定,求a的取值范围。
设函数f(x)(x≥0)可微,且f(x)>0.将曲线y=f(x),x=1,x=a(a>1)及x轴所围成平面图形绕x轴旋转一周得旋转体体积为π/3[s2f(a)-f(1)].若f(1)=1/2,求:f(x)的极值.
设三维向量空间R3中的向量ξ在基α1=(1,-2,1)T,α2=(0,1,1)T,α3=(3,2,1)T下的坐标为(x1,x2,x3)T,在基β1,β2,β3下的坐标为(y1,y2,y3)T,且y1=x1一x2一x3,y2=一x1+x2,y3=x1+2x3
某商店销售某种季节性商品,每售出一件获利5(百元),季度末未售出的商品每件亏损1(百元),以X表示该季节此种商品的需求量,已知X等可能的取值[1,100]中的任一正整数,问商店应提前贮备多少件该种商品,才能使获利的期望值达到最大.
(2004年)设有方程xn+nx一1=0,其中n为正整数,证明此方程存在唯一正实根xn,并证明当α>1时,级数收敛.
随机试题
外部招聘的优点是()
A、铜蓝蛋白B、转铁蛋白C、结合珠蛋白D、巨球蛋白E、C反应蛋白对小细胞低色素性贫血诊断有较大意义的是
对于妊娠合并甲状腺功能亢进的描述正确的是:
成人引起缺铁性贫血最常见的原因是
经财政部批准.下列情况町以免征房产税的有()。
某项固定资产原值为40000元,预计净残值2000元,折旧年限为4年。采用年数总和法计提折旧,则第三年的折旧额为()元。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
搁浅10年之久的怒江水电项目.终于获得转正机会。2016年3月能源局起草的《水电发展“十三五”规划(征求意见稿)》显示,怒江水电再次入围重点水电发展之列。始于2000年的怒江水电规划,2003年曾因中央高层批文而搁浅。2003年,发改委通过了《怒
ThepresidentisoftenawakenedbyanoisycrowdwhichassemblesontheWhiteHouse.
上述材料体现了哪些矛盾分析的方法?结合材料2、3,运用所学知识说明防止收入差距过分扩大的意义。
最新回复
(
0
)