首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2011年)求方程karctanx—x=0不同实根的个数,其中k为参数.
(2011年)求方程karctanx—x=0不同实根的个数,其中k为参数.
admin
2018-06-30
135
问题
(2011年)求方程karctanx—x=0不同实根的个数,其中k为参数.
选项
答案
解1 令f’(x)=karctanx—x,则f(x)是(一∞,+∞)上的奇函数,且 [*] 当k一1≤0即k≤1时,f’(x)<0(x≠0),f(x)在(一∞,+∞)内单调减少,方程f(x)=0只有一个实根x=0. 当k一1>0即k>1时,在[*]内,f’(x)>0,f(x)单调增加;在[*]内,f’(x)<0,f(x)单调减少,所以[*]是f(x)在(0,+∞)内的最大值. 由于f(0)=0,所以[*] 又因为[*]所以存在[*]使得f(ξ)=0. 由f(x)是奇函数及其单调性可知:当k>1时,方程f(x)=0有且仅有三个不同实根x=一ξ,x=0,x=ξ. 解2 令f(x)=karctanx-x,显然f(x)是奇函数,则其零点关于原点对称,f(0)=0,只需讨论f(x)在(0,+∞)上零点的个数,为此,令 [*] g(x)与f(x)在(0,+∞)内零点个数相同, [*] 则g’(x)>0 x∈(0,+∞) g(x)单调增,又 [*] 若k≤1,g(x)在(0,+∞)内:无零点,原方程有唯一实根x=0; 若k>1,g(x)在(0,+∞)内有唯一零点,原方程有三个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/WRg4777K
0
考研数学一
相关试题推荐
设D为xOy平面上的区域,若f’’xy与f’’yx都在D上连续,证明:f’’xy与f’’yx在D上相等.
设F(x,y)=在D=[a,b]×[c,d]上连续,求I=∫∫DF(x,y)dxdy并证明:I≤2(M-m),其中M和m分别是f(x,y)在D上的最大值和最小值.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.证明:Aα1,Aα2,Aα3线性无关;
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:均存在.
在区间[0,a]上|f’’(x)|≤M,且f(x)在(0,a)内取得极大值.求证:|f’(0)|+|f’(a)|≤Ma.
设,其中函数f,g具有二阶连续偏导数,求
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
随机试题
胚胎期指的是受孕后的
营销管理中消费者市场的主要细分变量有()
常用的口服降糖药有哪些?怎样发挥降糖作用?
溴甲酚绿法测定血清白蛋白其显色原理是
A.桂枝汤B.牡蛎散C.生脉散D.玉屏风散E.当归六黄汤具有益气固表止汗功用的方剂是
为了遏制房价过快增长,国土部门表示,今后将在土地使用权出让中,适当减少拍卖方式,增加招标方式。其主要原因在于招标方式具有()的特点。
下列金融资产中,在确定相关减值损失时,可不对其预计未来现金流量进行折现的是()。
鸦片战争以后,提出“师夷长技以制夷”思想的是()。
什么是新歌剧?试以《白毛女》为例。简要论述新歌剧的音乐创作特点。
有数据定义语句:DimX,YAsInteger以上语句表明
最新回复
(
0
)