首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续. ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界. ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
下述命题 ①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续. ②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界. ③设f(x)在(一∞,+∞)上为正值的连续函数,则在(一∞,+∞)上也是正值的连续函数
admin
2019-07-10
49
问题
下述命题
①设f(x)在任意的闭区间[a,b]上连续,则f(x)在(一∞,+∞)上连续.
②设f(x)在任意的闭区间[a,b]上有界,则f(x)在(一∞,+∞)上有界.
③设f(x)在(一∞,+∞)上为正值的连续函数,则
在(一∞,+∞)上也是正值的连续函数.
④设f(x)在(一∞,+∞)上为正值的有界函数,则
在(一∞,+∞)上也是正值的有界函数.
其中正确的个数为( )
选项
A、1.
B、2
C、3
D、4
答案
B
解析
①与③是正确的,②与①足小正确的,正确的个数为2.①是正确的,理由如下:设x
0
∈(-∞,+∞),则它必含某区间[a,b]中,由于题设f(x)任意区间间[a,b]上连续。故在x
0
处连续,所以(一∞.+∞)上连续,论证的关键之处是:函数f(x)的连续性是按点来讨沦的,在区间上每一点连续,就说它在该区间连续。②函数f(x)[a,b]上有界性的“界”是与区间有关的,例如f(x)=x在区间[a,b]上,|f(x)|≤max{|a|,
这个“界”与区间[a,b]有关,容易看出,在区间(一∞,+∞)上,此f(x).就无界了.②不正确.⑧是正确的.其理由是:设x
0
∈(一∞,+∞).所以,f(x
0
)>0且f(x)x
0
处连续,由连续函数的四则运算知,
在x
0
处也连续。所以
连续.④是不正确的,例如函数f(x)=e
-x
2
,在区间(一∞,一∞)上,0<f(x)≤1,所有f(x)在(一∞,+∞)上有界,而
在(-∞,+∞)上无界.这是因为当x→±∞时,
转载请注明原文地址:https://kaotiyun.com/show/WbN4777K
0
考研数学二
相关试题推荐
设函数f(x)=∫01|t2-x2|dt(x>0),求f’(x),并求f(x)的最小值。
曲线L的极坐标方程是r=θ,则L在点(r,θ)=(π/2,π/2)处的切线的直角坐标方程是_______。
曲线y=(x-1)2(x-3)2的拐点个数为()
下列曲线中有渐近线的是()
已知f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3一6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.求导弹运行的轨迹满足的微分方程及初始条件;
求曲线xy=x2y在点(1,1)处的切线方程与法线方程.
证明:定积分I=sinx2dx>0.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,计算PQ;
随机试题
由于线路原因使部分在用业务系统阻断的障碍称为全阻障碍。
Iappreciate______toyourhome.
A.利水通淋B.消痈排脓C.行气消积D.祛瘀止痛
若观察胎儿脸面景观,宜采用哪种诊断法
(一)去甲肾上腺素水溶液加热时,效价降低,是因为发生了以下哪种反应
10kV及以下变电所设计中,一般情况下,动力和照明宜共用变压器,在下列关于设置专用变压器的表述中哪一项是正确的?()
建设民事商事法律关系的特点主要表现在()。
关税
我国在量子雷达领域取得突破,获得百公里级探测威力,相对于传统雷达,探测灵敏度大幅提高。量子雷达能发现隐形飞机的基本原理是()。
在我国,()有权决定特赦。
最新回复
(
0
)