首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且x为对应的特征向量;(3)为A*的特征值,且x为对应的特征向量.
admin
2018-08-02
127
问题
设λ为可逆方阵A的特征值,且x为对应的特征向量,证明:(1)λ≠0;(2)
为A
-1
的特征值,且x为对应的特征向量;(3)
为A
*
的特征值,且x为对应的特征向量.
选项
答案
若λ=0,则有|0E-A|=0,即(-1)
n
|A|=0,[*]|A|=0,这与A可逆矛盾,故必有λ≠0;由Ax=λx两端右乘A
-1
,得λA
-1
x=x,两端同乘[*],得A
-1
x=[*]x,故[*]为A
-1
的一个特征值,且c为对应的特征向量;因A
-1
=|A|A
*
,代入A
*
x=[*]x,得A
*
x=[*]为A
*
的一个特征值.且x为对应的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/X1j4777K
0
考研数学二
相关试题推荐
设函数f(u,v)满足f(x+y,)=x2一y2,则与依次是
当x≥0时,f(x)=x,设g(x)=当x≥0时,求∫0xf(t)g(x-t)dt.
设由方程xef(y)=ey确定y为x的函数,其中f(x)二阶可导,且f’≠1,则=_______
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(Ⅰ)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0[*]A(β1,β2,…,βn)=[*]BAT=O[*]α1T,α2T,…,αnT为BY=0的一组解,
设ψ(x)是以2π为周期的连续函数,且φ’(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
已知f(x1,x2,x3)=5x12+5x22+cx32-2x1x2+6x1x3—6x2x3的秩为2.试确定参数c及二次型对应矩阵的特征值,并问f(x1,x2,x3)=1表示何种曲面.
设A是三阶实对称阵,λ1=一1,λ2=λ3=1是A的特征值,对应于λ1的特征向量为ξ1=[0,1,1]T,求A.
0被积函数是奇函数,在对称区间[一2,2]上积分为零.
计算二重积分其中D是第一象限中由直线y=x和曲线y=x3所围成的封闭区域.
求曲线χ=acos3t,y=asin3t绕直线y=χ旋转一周所得曲面的面积.
随机试题
空气调节房间总面积不大或建筑物中仅个别房间要求空调时,宜采用哪种空调机组?[2004年第82题]
急诊分诊标准中,Ⅱ类病人等待时间不应超过()
发热高峰期泌尿功能变化是尿量减少、尿比重升高。
短暂性脑缺血发作的主要病因是
关于单克隆抗体
普通型流脑的典型临床表现是
关于电子书的版式设计,说法正确的有()。
课外校外教育与课内教育的共同之处在于它们都是()
结合材料回答问题。材料1每个人是手段,同时又是目的,而且只有成为他人的手段才能达到自己的目的,并且只有达到自己的目的才能成为他人的手段,——这种相互关联是一个必然的事实。
ColumnAColumnBk6
最新回复
(
0
)