首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(-1,2,2,1)T。 (Ⅰ)求方程组(1)的基础解系; (Ⅱ)问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理
设四元线性方程组(1)为又已知齐次线性方程组(2)的通解为k1(0,1,1,0)T+k2(-1,2,2,1)T。 (Ⅰ)求方程组(1)的基础解系; (Ⅱ)问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理
admin
2020-03-05
15
问题
设四元线性方程组(1)为
又已知齐次线性方程组(2)的通解为k
1
(0,1,1,0)
T
+k
2
(-1,2,2,1)
T
。
(Ⅰ)求方程组(1)的基础解系;
(Ⅱ)问线性方程组(1),(2)是否有非零公共解?若有,则求出所有非零公共解;若没有,说明理由。
选项
答案
(Ⅰ)方程组(1)的同解方程组为[*] 基础解系为ξ
1
=[*],ξ
2
=[*],故通解为C
1
(0,0,1,0)T+C
2
(-1,1,0,1)
T
,其中C
1
、C
2
为任意常数。 (Ⅱ)方令C
1
(0,0,1,0)+C
2
(-1,1,0,1)=k
1
(0,1,1,0)+k
2
(-1,2,2,1)。则有 [*] (k
1
,k
2
,C
1
,C
2
为未知数)。 系数矩阵 [*] 那么同解方程组为[*]令k=C
2
,则方程组的解为k(-1,1,1,1)
T
,即方程组(1)、(2)的所有非零公共解是k(-1,1,1,1)
T
,k≠0。
解析
转载请注明原文地址:https://kaotiyun.com/show/XgS4777K
0
考研数学一
相关试题推荐
设α,β,γ1,γ2,γ3都是4维列向量,且|A|=|α,γ1,γ2,γ3|=4,|B|=|β,2γ1,3γ2,γ3|=21,则|A+B|=_________.
设曲面则=_________.
已知P(A)=p,P(B)=q,且A与B互斥,则A与B恰有一个发生的概率为()
设函数f(u)可导,y=f(x2)当自变量x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=_________.
设(-1)nan条件收敛,则必有()
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L-ysinx2dx+xcosy2dy<
设f(x)在[a,b]上连续,且g(x)>0,证明:存在一点ξ∈a,6],使∫abf(x)g(x)dx=f(ξ)∫abg(x)dx.
假设随机变量X1,X2,X3,X4相互独立,且同分布,P(Xi=0)=0.6,P(Xi=1)=0.4(i=1,2,3,4),求行列式的概率分布.
[2014年]下列曲线有渐近线的是().
设f(x)在[a,+∞]上可导,且当x>a时,f’(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间上有且仅有一个实根.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)