首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
“对任意的ε∈(0,1),总存在正整数N,当n≥N时,恒有∣xn一a∣≤2ε”是数列{xn)收敛于a的( ).
“对任意的ε∈(0,1),总存在正整数N,当n≥N时,恒有∣xn一a∣≤2ε”是数列{xn)收敛于a的( ).
admin
2021-01-19
53
问题
“对任意的ε∈(0,1),总存在正整数N,当n≥N时,恒有∣x
n
一a∣≤2ε”是数列{x
n
)收敛于a的( ).
选项
A、充分条件,但非必要条件
B、必要条件,但非充分条件
C、充分必要条件
D、既非充分条件,又非必要条件
答案
C
解析
将题中数列{x
n
}收敛于a的条件与原定义中的条件相比较,看其是否等价.
仅(C)入选.将题中的条件与上述数列极限定义比较知,“对任意的ε∈(0,1)”与“对任给ε>0”是相当的,而n≥N比定义中多了一个等号,显然由于定义中的N并不唯一,多一个等号也是可以的.事实上,若取N
0
=N一1,则n>N
0
,即为n≥N.至于∣x
n
一a∣≤2ε,这里既多了一个等号,还乘以2.但由于ε>0是任给的,满足ε=ε
0
/3的ε
0
>0仍然是任给的,这时就有
∣x
n
一a∣≤2ε=(2/3)ε
0
)<ε
0
.
这与∣x
n
一a∣<ε的原定义是等价的.综上所述,所给条件是数列{x
n
}收敛于a的充要条件.
转载请注明原文地址:https://kaotiyun.com/show/Zx84777K
0
考研数学二
相关试题推荐
[2003年]设函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(x>0.若极限存在,证明:在(a,b)内存在与(2)中手相异的点η,使f′(η)(b2一a2)=f(x)dx.
(13年)设曲线L的方程为(1≤x≤e)(I)求L的弧长;(Ⅱ)设D是由曲线L,直线x=1,x=e及x轴所围平面图形.求D的形心的横坐标.
设实二次型f(x1,x2,x3)=(x1一x2+x3)2+(x2+x3)2+(x1+ax3)2,其中a是参数•(I)求f(x1,x2,x3)=0的解;(Ⅱ)求f(x1,x2,x3)的规范形.
(Ⅰ)证明方程xn+xn一1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(Ⅱ)记(Ⅰ)中的实根为xn,证明xn存在,并求此极限.
[2004年]设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上f(x)=x(x2一4),若对任意x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[一2,0)上的表达式;
(11年)设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求
[2013年]设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:存在η∈(一1,1),使得f″(η)+f′(η)=1.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
若y=xex+x是微分方程y"一2y’+ay=bx+c的解,则()
下列无穷小中阶数最高的是().
随机试题
社会主义精神文明建设的指导思想什么?
线粒体氧化磷酸化解偶联意味着
患者,男性,32岁,拟拔除右下智齿行局部麻醉。采用含肾上腺素普鲁卡因5ml行局部麻醉注射后,患者即感到心悸、头晕、头痛、脉搏快而有力、血压升高、口唇苍白。此情况属于
A、氨茶碱B、布地奈德C、沙丁胺醇D、色甘酸钠E、异丙托溴铵口服无效,只能喷雾吸入的是()。
无领导小组讨论题目为“一个好的领导应该具备什么素质?”,这是一个()。
近视:眼镜
Youshould______tooneormoreweeklymagazinessuchasTime,orPeople.
Readthetextbelow.Writeanessayinabout120words,inwhichyoushouldsummarizethekeypointsofthetextandmakecommen
Untilrecentlymostastronomersbelievedthatthespacebetweenthegalaxiesinouruniversewasanearperfectvacuum.Thisort
HUIYUAN100%OrangeJuiceIngredients:Purifiedwaterandorangejuiceconcentrate.Nosugar,artificialcolorsorpreserva
最新回复
(
0
)