首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,证明r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
设A为n阶矩阵,证明r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT.
admin
2021-11-25
42
问题
设A为n阶矩阵,证明r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβ
T
.
选项
答案
设r(A)=1,则A为非零矩阵且A的每行元素都成比例 [*] 故A=αβ
T
,显然a,β为非零向量,设A=αβ
T
,其中α,β为非零向量,则A为非零矩阵,于是r(A)≥1,又r(A)=r(αβ
T
)≤r(α)=1,故r(A)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/a4y4777K
0
考研数学二
相关试题推荐
已知α=(1,﹣3,2)T,β=(0,1,2)T,设矩阵A=αβT-E,则矩阵A最大特征值的特征向量是()
已知二次型f(x1,x2,x3)=2x12+3x22+3x32+2ax2x3(a﹥0),若二次型f的标准形为f=y12+2y22+5y32,求a的值及所使用的正交变换矩阵。
设f(x)在[a,b]上具有二阶导数,且f’’(x)﹤0,试证明:
从抛物线y=x2-1上的任意一点M(t,t2-1)引抛物线y=x2的两条切线。(Ⅰ)求这两条切线的切线方程;(Ⅱ)证明这两条切线与抛物线y=x2所围图形的面积为常数。
设f(x)在(﹣∞,﹢∞)连续,且F(x)=,证明:(Ⅰ)F(x)在(﹣∞,﹢∞)内具有连续的导数;(Ⅱ)若f(x)在(﹣∞,﹢∞)内单调递增,则F(x)在(﹣∞,0]内单调递增,在(0,﹢∞)内单调递减。
设A,B为3阶可逆矩阵,A,B相似,且|A-3E|=0,λ1=1,λ2=2是矩阵A的两个特征值,则|B﹣1-2AB﹣1|=()
设4维向量组a1=(1+a,1,1,1)T,a2=(2,2+a,2,2)T,a3=(3,3,3+a,3)T,a4=(4,4,4,4+a)T,问a为何值时,a1,a2,a3,a4线性相关?当a1,a2,a3,a4线性相关时,求其一个极大线性无关组,并将其
已知4维列向量α1,α2,α3线性无关,若β(i=1,2,3,4)非零且与α1,α2,α3均正交,则(β1,β2,β3,β4)=()
设矩阵B的列向量线性无关,且BA=C,则().
设A为三阶方阵,α为三维列向量,已知向量组α,Aα,A2α线性无关,且A3α=3α一2A2α.证明:(Ⅰ)矩阵B=(α,Aα,A4α)可逆;(Ⅱ)BTB是正定矩阵.
随机试题
股票承销
Smokingisconsidereddangeroustothehealth.Alltheshopsare【56】tosellcigarettestochildren.Ourtobacco-seller,Mr.Jo
急性脓胸的治疗原则
根据个人所得税的有关规定,下列属于非居民纳税人的是()。
商业银行的现金资产主要包括()。
下列单位中不属于重量单位的是()。
截至2014年12月底,全国实有各类市场主体6932.22万户,比上年末增长14.35%,增速较上年同期增加4.02个百分点;注册资本(金)129.23万亿元,比上年末增长27.70%。其中,企业1819.28万户,个体工商户4984.06万户,农民专业合
艾滋病被称为“20世纪的瘟疫”,艾滋病病毒将人体内的()作为攻击目标。
现行PC机提供的串行接口9针连接器,所采用的接口标准是______。
Thecompanyleaderhasnoteverdoneanythingyetalthoughhepromisedtohavemycomplaint
最新回复
(
0
)