首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4),αi(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则线性无关向量组是 ( )
设A=(α1,α2,α3,α4),αi(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则线性无关向量组是 ( )
admin
2018-12-21
56
问题
设A=(α
1
,α
2
,α
3
,α
4
),α
i
(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ
1
=(-2,0,1,0)
T
,ξ
2
=(1,0,0,1)
T
,则线性无关向量组是 ( )
选项
A、α
1
,α
2
.
B、α
1
,α
3
.
C、α
1
,α
4
.
D、α
3
,α
4
.
答案
A
解析
由Ax=0的基础解系为ξ
1
=(-2,0,1,0)
T
,ξ
2
(1,0,0,1)
T
,知r(A)=2,所以A中有两个线性无关列向量,则将ξ
1
,ξ
2
代入方程有一2α
1
﹢α
3
=0,α
1
﹢α
4
=0,即α
1
=-α
4
=
,
因此可知α
1
,α
3
;α
1
,α
4
;α
3
,α
4
线性相关,故由排除法,应选(A).
转载请注明原文地址:https://kaotiyun.com/show/a8j4777K
0
考研数学二
相关试题推荐
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
A.高尔夫球肘B.网球肘C.锤状指D.钮扣指E.鹅颈指内在肌的挛缩造成掌指关节屈,近侧指间关节过伸,远侧指间关节屈,成为
以下关于电气保护,说法错误的是()。
Icannotbut______thetruthofyourremarks,althoughtheygoagainstmyinterests.
下列关于眼眶肿瘤的论述,错误的是
患儿,8岁。身体瘦弱,汗出较多,心烦少寐,寐后汗多,低热,口干,手足心热,唇舌色淡,脉细弱。治疗应首选()
某企业按照国家、省、市、区安委办印发的文件要求,积极开展企业双重预防机制建设工作,根据企业的实际决定选用风险矩阵法,作为其中一种风险评估方法,开展安全风险等级评估工作。在运用风险矩阵法进行风险等级评估过程中,事故发生的可能性为6,事故后果严重程度为1,风险
已知椭圆(a>b>0)离心率是,若左焦点到直线距离为4。求椭圆方程;
什么是“掩蔽现象”?
[*]
在计算机中,条码阅读器属于
最新回复
(
0
)