首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4),αi(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则线性无关向量组是 ( )
设A=(α1,α2,α3,α4),αi(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ1=(-2,0,1,0)T,ξ2=(1,0,0,1)T,则线性无关向量组是 ( )
admin
2018-12-21
57
问题
设A=(α
1
,α
2
,α
3
,α
4
),α
i
(i=1,2,3,4)是n维列向量,已知齐次线性方程组Ax=0有基础解系ξ
1
=(-2,0,1,0)
T
,ξ
2
=(1,0,0,1)
T
,则线性无关向量组是 ( )
选项
A、α
1
,α
2
.
B、α
1
,α
3
.
C、α
1
,α
4
.
D、α
3
,α
4
.
答案
A
解析
由Ax=0的基础解系为ξ
1
=(-2,0,1,0)
T
,ξ
2
(1,0,0,1)
T
,知r(A)=2,所以A中有两个线性无关列向量,则将ξ
1
,ξ
2
代入方程有一2α
1
﹢α
3
=0,α
1
﹢α
4
=0,即α
1
=-α
4
=
,
因此可知α
1
,α
3
;α
1
,α
4
;α
3
,α
4
线性相关,故由排除法,应选(A).
转载请注明原文地址:https://kaotiyun.com/show/a8j4777K
0
考研数学二
相关试题推荐
(1997年)已知y1=χeχ+e2χ,y2=χeχ+e-χ,y3=χeχ+e2χ-e-χ是某二阶线性非齐次微分方程的三个解,求此微分方程.
(1993年)设二阶常系数线性微分方程y〞+αy′+βy=γeχ的一个特解为y=e2χ+(1+χ)eχ,试确定常数α、β、γ,并求该方程的通解.
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
设A是s×n矩阵,B是A的前m行构成的m×b矩阵,已知A的行向量组的秩为r,证明:r(a)≥r+m一s.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零,证明:α1,α2,…,αs,β中任意5个向量线性无关.
设向量组α1=[α11,α21,…,αn1]T,α2=[α12,α22,…,αn2]T,…,αs=[α1s,α2s,…,αns]T,证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:(1)a为何值时,向量组α1,α2,α3,α4诹线性相关;(2)a为何值时,向量组α1,α2,α3,α4线
随机试题
文化冲击通常要经历四个阶段,这四个阶段依次是()
行气药的味,大多是
A.对TI抗原应答B.ADCCC.对TD抗原应答D.主要分泌细胞因子作用E.特异杀伤肿瘤细胞
A.小儿化毒散B.肥儿丸C.小儿消积止咳口服液D.小儿感清E.鹭鸶咯丸治疗小儿饮食积滞,痰热蕴肺所致的咳嗽,夜间加重,喉间痰鸣,腹胀、口臭,宜选()
2011年末,湖南省中小企业共计18.49万家,较上年增长11.0%,占全省企业总数的99.8%。2011年全省中小企业实现增加值达8154.32亿元,较上年增长16.1%;中小企业增加值占GDP的比重为41.5%,比上年提高0.8个百分点。中小企业拉动G
时代要求教师教育学生不是灌输知识,而是培养能力。教育质量的关键措施是指尽快把目前的应试教育转变为素质教育。以下各项都可能是上述论述所假设的,除了()。
Venturecapitalhasnowbecomeaglobalphenomenon.Hereisthe(1)_____statusofeachmajorregionthathasventurecapitalac
在Windows环境下,为了将屏幕内容存入剪贴板,应按【 】键。
BigBenisinLondon,England.BigBenisthenameofaclock.
CollegesandUniversities,institutionsofhighereducationthatofferprogramsbeyondthehighschoollevel.Collegesanduniv
最新回复
(
0
)