首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2010年] 设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
[2010年] 设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
admin
2019-08-01
56
问题
[2010年] 设A=
,存在正交矩阵Q使得Q
T
AQ为对角矩阵,若Q的第1列为
[1,2,1]
T
,求a,Q.
选项
答案
先利用已知Q的第1列的条件求出参数a及对应的特征值,再将A进行正交相似对角化. 已知A的一个特征向量ξ
1
=[*][1,2,1]
T
,可求参数a及ξ
1
对应的特征值λ
1
.事实上,由Aξ
1
=λ
1
ξ
1
得到 [*] 亦即[*]=2λ
1
,解得[*] 下面求化A为对角矩阵的正交变换矩阵Q.为此,先求A的特征值及其对应的线性无关的特征向量. 由A=[*]及∣λE—A∣=[*]=0得到 [*] =(λ+4)[(λ一3)(λ一4)一2] =(λ+4)(λ一5)(λ一2). 故A的特征值为λ
1
=2,λ
2
=一4,λ
3
=5. 解(λ
2
E—A)X=[*],即得 属于λ
2
=一4的特征向量为ξ
2
=[一1,0,1]
T
. 解(λ
2
E一A)X=[*],即得属 于λ
3
=5的特征向量为ξ
3
=[1,一1,1]
T
. 又因A为实对称矩阵,属于不同特征值的特征向量ξ
1
,ξ
2
,ξ
3
相互正交,将其单位化得到 η
1
=[*][1,2,1]
T
, η
2
=[*][一1,0,1]
T
, η
3
=[*].[1,一1,1]
T
. 取Q=[η
1
,η
2
,η
3
]=[*],则Q
T
AQ=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/bDN4777K
0
考研数学二
相关试题推荐
设f(x)为连续函数,计算+yf(x2+y2)]dxdy,其中D是由y=x2,y=1,x=-1围成的区域.
设A=①a,b取什么值时存在矩阵X,满足AX-AX=B?②求满足AX-AX=B的矩阵X的一般形式.
设求f(x)在点x=0处的导数.
将f(x,y)dxdy化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
设A为实矩阵,证明ATA的特征值都是非负实数.
设两曲线y=在(x0,y0)处有公切线(如图3.13),求这两曲线与x轴围成的平面图形绕x轴旋转而成的旋转体的体积V.
设A是3阶实对称矩阵,满足A2+2A=0,并且r(A)=2.(1)求A的特征值.(2)当实数后满足什么条件时A+kE正定?
若函数f(x,y)对任意正实数t,满足f(tx,ty)=tnf(x,y),(7.12)称f(x,y)为n次齐次函数.设f(x,y)是可微函数,证明:f(x,y)为n次齐次函数
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
随机试题
下列属于美国艺术家安迪.沃霍尔作品的是()。[河南2019]
关于艾滋病,正确的是()
患者男,30岁。夏天在田地里劳作时,突然出现头痛、头晕、恶心,继而出现口渴、胸闷、面色苍白、冷感淋漓、脉搏细速、血压下降,后晕倒在地。该患者最可能发生了()
对出具的计量检定证书和校准证书,以下_________项要求是必须满足的基本要求。
决定着经纪企业在规模扩大时能否保持乃至提高其整体服务质量和水准的是()。
当事人申请仲裁,应当符合的条件不包括()。
企业重组,是指企业在日常经营活动以外发生的法律结构或经济结构重大改变的交易。重组形式包括()。
1694年()银行的成立,标志着资本主义现代商业银行制度开始形成。
遇到下榻的酒店发生火灾,导游员要带领游客自救,以下采取的正确做法有()。
在就业者中存在一种“多元的幻觉”:认为在这个多元开放的时代,每个人对自己的未来负责,对未来之路的选择是多元的、自由的。但看看现实就知道,这种选择下的目标指向是一元的,大家都一窝蜂地流向了城市,盯住了高薪白领职位,以为是个性选择,实际都汇合进同一条河流;以为
最新回复
(
0
)