首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
"Weather and Chaotic Systems" Scientists today have a very good understanding of the physical laws and mathematical equatio
"Weather and Chaotic Systems" Scientists today have a very good understanding of the physical laws and mathematical equatio
admin
2012-01-14
41
问题
"Weather and Chaotic Systems"
Scientists today have a very good understanding of the physical laws and mathematical equations that govern the behavior and motion of atoms in the air, oceans, and land. Why, then, do we have so much trouble predicting the weather? For a long time, most scientists
assumed
that the difficulty of weather prediction would go away once we had enough weather stations to collect data from around the world and sufficiently powerful computers to deal with all the data. However, we now know that weather is
fundamentally
unpredictable on time scales longer than a few weeks. To understand why, we must look at the nature of scientific prediction.
→ Suppose you want to predict the location of a car on a road 1 minute from now. You need two basic pieces of information: where the car is now, and how fast it is moving. If the car is now passing Smith Road and heading north at 1 mile per minute, it will be 1 mile north of Smith Road in 1 minute.
Now, suppose you want to predict the weather. Again, you need two basic types of information: (1) the current weather and (2) how weather changes from one moment to the next. You could attempt to predict the weather by creating a "model world." For example, you could overlay a globe of the Earth with graph paper and then specify the current temperature, pressure, cloud cover, and wind within each square. These are your starting points, or initial conditions. Next, you could input all the initial conditions into a computer, along with a set of equations (physical laws) that describe the processes that can change weather from one moment to the next.
→ Suppose the initial conditions represent the weather around the Earth at this very moment and you run your computer model to predict the weather for the next month in New York City. The model might tell you that tomorrow will be warm and sunny, with cooling during the next week and a major storm passing through a month from now. Now suppose you run the model again but make one minor change in the initial conditions—say, a small change in the wind speed somewhere over Brazil.A For tomorrow’s weather, this slightly different initial condition will not change the weather prediction for New York City.B But for next month’s weather, the two predictions may not agree at all! C
The disagreement between the two predictions arises because the laws governing weather can cause very tiny changes in initial conditions to be greatly magnified over time.D This extreme sensitivity to initial conditions is sometimes called the butterfly effect: If initial conditions change by as much as the flap of a butterfly’s wings, the resulting prediction may be very different.
→ The butterfly effect is a hallmark of chaotic systems. Simple systems are described by linear equations
in which
, for example, increasing a cause produces a proportional increase in an effect. In contrast, chaotic systems are described by nonlinear equations, which allow for subtler and more intricate interactions. For example, the economy is nonlinear because a rise in interest rates does not automatically produce a corresponding change in consumer spending. Weather is nonlinear because a change in the wind speed in one location does not automatically produce a corresponding change in another location. Many (but not all) nonlinear systems exhibit chaotic behavior.
→ Despite their name, chaotic systems are not completely random. In fact, many chaotic systems have a kind of underlying order that explains the general
features
of their behavior even while details at any particular moment remain unpredictable. In a sense, many chaotic systems are "predictably unpredictable." Our understanding of chaotic systems is increasing at a tremendous rate, but much remains to be learned about them.
In paragraph 7, the author suggests that our knowledge of chaotic systems
选项
A、will never allow us to make accurate predictions
B、has not improved very much over the years
C、reveals details that can be predicted quite accurately
D、requires more research by the scientific community
答案
D
解析
"Our understanding of chaotic systems is increasing at a tremendous rate, but much remains to be learned about them." Choice A is not correct because "many chaotic systems have a kind of underlying order." Choice B is not correct because "Our understanding of chaotic systems is increasing at a tremendous rate." Choice C is not correct because "details... remain unpredictable."
转载请注明原文地址:https://kaotiyun.com/show/bJyO777K
0
托福(TOEFL)
相关试题推荐
DothefollowingstatementsagreewiththeviewsofthewriterinReadingPassage3?Inboxes31-36onyouranswersheet,write
Completethesentencesbelow.ChooseNOMORETHANTWOWORDSfromthepassageforeachanswer.Writeyouranswersinboxes10-13
Lookatthefollowingstatements(Questions19-23)andthelistofscientistsbelow.Matcheachstatementwiththecorrectscien
Lookatthefollowingpeople(Questions20-23)andthelistofideasbelow.Matcheachpersonwiththecorrectidea,A-E.Write
REVIEWOFRESEARCHONTHEEFFECTSOFFOODPROMOTIONTOCHILDRENThisreviewwascommissionedbytheFoodStandardsAgencytoex
AncientPeopleinSaharaOnOct.13,2000,PaulSereno,aprofessorfromtheUniversityofChicago,guidedateamofpalaeon
Whatwasthestudentsurprisedtodiscoverhehadalotof?Theprofessorpointsoutthattheuniversitylanguagecentre______
Theprofessorsaysthatsuperhighways______.【25】
NarratorListentoaconversationbetweenastudentandaacademicadviser.Nowgetreadytoanswerthequestions.Youm
NarratorListentoaconversationbetweenastudentandaacademicadviser.Nowgetreadytoanswerthequestions.Youmayusey
随机试题
毛泽东思想活的灵魂是()
电磁式水温表由电磁式水温指示器和负温度系数的电阻传感器组成。()
女性,55岁,腹痛腹胀停止排便排气2天,3年前有胃大部切除术史,初步诊断为
赵女士,52岁,因消化道出血入院,患者对医院规章制度不熟悉而焦虑,试述护士接待患者人院时应采取的主要护理措施。
投资项目评价的会计报酬率法的优点有()。
学生阅读时常使用划重点线的策略,这是利用了知觉的哪种特性()
心理学家认为,在一般情况下,人们都不愿意接受较难的要求,因为它费时费力又难以成功,相反,人们却乐于接受较小的、较易完成的要求,在实现了较小的要求后,人们才慢慢地接受较大的要求,这就是“登门坎效应”。根据上述定义,下列不符合登门坎效应的是:
货币的职能包括()。
如果一个有向图(25),则是一棵有向树。
Thereislittle______(similar)betweenthetworeligions.
最新回复
(
0
)