首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT;
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT;
admin
2018-04-12
67
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
证明二次型f对应的矩阵为2αα
T
+ββ
T
;
选项
答案
f=(2a
1
2
+b
1
2
)x
1
2
+(2a
2
2
+b
2
2
)x
2
2
+(2a
3
2
+b
3
2
)x
3
2
+(4a
1
a
2
+2b
1
b
2
)x
1
x
2
+(4a
1
a
3
+b
1
b
3
)x
1
x
3
+(4a
2
a
3
+2b
2
b
3
)x
2
x
3
。 则f对应的矩阵为 [*] =2αα
T
+ββ
T
。
解析
转载请注明原文地址:https://kaotiyun.com/show/cDk4777K
0
考研数学二
相关试题推荐
设有函数试分析在点x=0处,k为何值时,f(x)有极限;k为何值时,f(x)连续;k为何值时,f(x)可导.
设问当k为何值时,函数f(x)在其定义域内连续?为什么?
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设函数f(x),g(x)在上连续,且g(x)>0,利用闭区间上连续函数性质,证明存在一点ξ∈(a,b),使
已知y=x/lnx是微分方程y’=y/x+φ(x/y)的解,则φ(x/y)的表达式为
函数y=C1ex+C2e-2x+xex满足的一个微分方程是
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问口为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.求α的值;
设A是n阶正定矩阵,E是n阶单位阵,证明A+E的行列式大于1.
随机试题
脊髓灰质炎的确诊依据是
胸片发现有钙化阴影,应考虑多种疾病,除了
某机电安装公司承担一项高塔设备的安装工作,由于该公司桅杆高度比塔低,在制定安装施工方案时,可采用的吊装方法有()。
关于建设工程监理的说法,正确的是()。
李青于2012年2月10日与××科技公司达成了聘用协议,并于2月13日签订了正式的劳动合同,但因为李青尚有其他事务要处理,双方约定李青于3月1日正式入职,但直到3月5日李青才到岗。依据我国《劳动合同法》的规定,李青与××公司之间的劳动关系自( )之日起建
报名:考试:揭晓
2016年Z省农林牧渔业增加值(现价)突破3000亿元大关,比上年增长4.0%;粮食生产实现“八连增”,以占全国3.8%的耕地生产了5.9%的粮食,亩产达415千克,创历史新高;农村居民人均纯收入首次突破万元大关,达10805元,比上年增加1687元;高效
请使用VC6或使用[答题]菜单打开考生文件夹proj3下的工程proj3,其中声明的CDeepCopy是一个用于表示矩阵的类。请编写这个类的赋值运算符成员函数operator=,以实现深层复制。要求:补充编制的内容写在“//******
ItwasClark’sfirstvisittoLondonUndergroundRailway.Against【C1】______adviceofhisfriends,hedecidedtogothereafter
InLondon,overhalfofthehomesbuiltbetween1919and1980hadonegarage.Butmanyarebecomingneedless.Between2002and2
最新回复
(
0
)