首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)三阶可导,且满足f″(x)+[f′(x)]2=x,又f′(0)=0,则( ).
设函数f(x)三阶可导,且满足f″(x)+[f′(x)]2=x,又f′(0)=0,则( ).
admin
2016-11-03
39
问题
设函数f(x)三阶可导,且满足f″(x)+[f′(x)]
2
=x,又f′(0)=0,则( ).
选项
A、f(0)是f(x)的极大值
B、f(0)是f(x)的极小值
C、点(0,f(0))是曲线y=f(x)的拐点
D、f(0)既不是f(x)的极值,点(0,f(0))也不是曲线y=f(x)的拐点
答案
C
解析
将x=0代入所给方程,得到f″(0)=0.在所给方程两端对x求导,得到
(0)=1—0=1>0.
由
,得到
=1>0.
由极限的保号性知f″(x)在x=0的左右两侧异号,故点(0,f(0))为f(x)的拐点.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/cHu4777K
0
考研数学一
相关试题推荐
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α1,则().
某商场以每件a元的价格出售某种商品,若顾客一次购买50件以上,则超出50件的商品以每件0.8а元的优惠价出售,试将一次成交的销售收入R表示成销售量z的函数.
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
设n阶矩阵A的元素全为1,则A的n个特征值是________.
设曲线L:f(x,y)=l(f(x,y)具有一阶连续偏导数),过第Ⅱ象限内的点M和第N象限内的点N,F为己上从点M到点N的一段弧,则下列积分小于零的是
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.若将所有产品开箱混装,任取一个其为废品的概率
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
已知对于n阶方阵A,存在自然数k,使得Ak=0,试证明矩阵E-A可逆,并求出逆矩阵的表达式(层为n阶单位矩阵).
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
随机试题
简述筹资业务会计制度设计除实行职责分工外的其他目标。
新加黄龙汤的功用是
尿红细胞管型常见于下列哪种疾病
下列说法错误的是()。
【背景资料】某实施监理的机电安装工程项目,施工合同采用了包工包全部材料的固定价格合同。工程招标文件参考资料中提供的用砂地点距工地4km。但是开工后,检查该砂质量不符合要求,承包商只得从另一距工地20km的供砂地点采购。而在一个关键工作面上又发生了以下原因
利润表中的项目主要是根据损益类账户的余额分析计算填列。()
金融衍生工具按照自身交易的方法和特点可以分为()。Ⅰ.金融远期合约Ⅱ.金融期货Ⅲ.股权类产品的衍生工具Ⅳ.金融互换
藏传佛教格鲁派的创立者是()。
阿拉比卡咖啡树对于环境变化十分敏感,只有在一个非常狭窄的温度区间内方能生存。它们一般生长在热带山区的上层植被中,本来就处于生态系统边缘,一旦气温上升就无处可去。如果气候继续变暖,那么阿拉比卡咖啡树的前景将“非常负面”。即使乐观估计,到2080年,也将有三分
满足下列条件之一的年份是闰年:1)年份能被4整除但不能被100整除2)年份能被400整除若Y代表年份,下面判断闰年的正确表达式是
最新回复
(
0
)