首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
admin
2018-04-14
60
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
,若f(0)=0,f’(0)=0,求f(u)的表达式。
选项
答案
设u=e
x
cosy,则z=f(u)=f(e
x
cosy),分别对x,y求导得 [*] =f"(u)e
2x
cos
2
y+f’(u)e
x
cosy, [*] =f"(u)e
2x
sin
2
y-f’(u)e
x
cosy, 则 [*]=f"(u)e
2x
=f"(e
x
cosy)e
2x
。 由已知条件[*]=(4z+e
x
cosy)e
2x
,可知f"(u)=4f(u)+u。这是一个二阶常系数非齐次线性微分方程。 对应齐次方程的通解为 f(u)=C
1
e
2u
+C
2
e
-2u
,其中C
1
,C
2
为任意常数。 设非齐次方程的特解为y
*
=ax+b,代入可得a=-1/4,b=0。 对应非齐次方程特解为y
*
=-1/4u。故非齐次方程通解为f(u)=C
1
e
2u
+C
2
e
-2u
-[*]u。 将初始条件f(0)=0,f’(0)=0代入,可得C
1
=1/16,C
2
=-1/16,所以f(u)的表达式为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cRk4777K
0
考研数学二
相关试题推荐
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0证明在[-a,a]上至少存在一点η,使。
[*]
[*]
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在z=1处取得极值g(1)=1.求
设f(x)是连续函数,F(x)是f(x)的原函数,则
某闸门的形状与大小如图所示,其中直线2为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高h应为多少m(米)?
利用求复合函数偏导的方法,得[*]
没ρ=ρ(x)是抛物线上任一点M(x,y)(x≥1)的曲率半径,s=s(x)是该抛物线上介于点A(1,1)与M之间的弧长,计算的值.(在直角坐标系下曲率公式为
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx.
(2003年)y=2χ的麦克劳林公式中χn项的系数是_______.
随机试题
下列哪项不是慢性盆腔炎的常见证型
甲亢病人浸润性突眼下列描述中哪项不妥
土地法律制度的核心内容是()。
横道图法是分析建设工程项目施工成本偏差的常用方法,其特点包括()。
红霞公司为增值税一般纳税人,适用增值税税率为17%,该公司2014年8月初的资产总额为1560000元,负债总额为936000元。8月份发生的交易或事项如下:(1)采购生产用原材料一批,取得的增值税专用发票注明买价为203295元,增值税为
现在所说的“导游”概念,下面表述正确的是()。
尽管近年来我国引进不少人才,但真正顶尖的领军人才还是凤毛麟角。就全球而言,人才特别是高层次人才紧缺已呈常态化、长期化趋势。某专家由此认为,未来10年,美国、加拿大、德国等主要发达国家对高层次人才的争夺将进一步加剧,而发展中国家的高层次人才紧缺状况更甚于发达
Manyyoungpeoplegotouniversitywithoutclearideaofwhattheyaregoingtodoafterwards.Ifastudentgoestoauniversity
10GbpsEthernet采用的标准是IEEE()。
Hecamebacklate,______whichtimealltheguestshadalreadyleft.
最新回复
(
0
)