首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
设函数f(u)具有二阶连续导数,z=f(excosy)满足=(4z+excosy)e2x,若f(0)=0,f’(0)=0,求f(u)的表达式。
admin
2018-04-14
49
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cosy)满足
=(4z+e
x
cosy)e
2x
,若f(0)=0,f’(0)=0,求f(u)的表达式。
选项
答案
设u=e
x
cosy,则z=f(u)=f(e
x
cosy),分别对x,y求导得 [*] =f"(u)e
2x
cos
2
y+f’(u)e
x
cosy, [*] =f"(u)e
2x
sin
2
y-f’(u)e
x
cosy, 则 [*]=f"(u)e
2x
=f"(e
x
cosy)e
2x
。 由已知条件[*]=(4z+e
x
cosy)e
2x
,可知f"(u)=4f(u)+u。这是一个二阶常系数非齐次线性微分方程。 对应齐次方程的通解为 f(u)=C
1
e
2u
+C
2
e
-2u
,其中C
1
,C
2
为任意常数。 设非齐次方程的特解为y
*
=ax+b,代入可得a=-1/4,b=0。 对应非齐次方程特解为y
*
=-1/4u。故非齐次方程通解为f(u)=C
1
e
2u
+C
2
e
-2u
-[*]u。 将初始条件f(0)=0,f’(0)=0代入,可得C
1
=1/16,C
2
=-1/16,所以f(u)的表达式为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/cRk4777K
0
考研数学二
相关试题推荐
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x),其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=(x)在点(6,f(6))处的切线方程.
[*][*]
设,(u,v)是二元可微函数,。
设函数z=z(x,y)由方程z=e2x-3z+2y确定,则=_______.
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。求容器的容积;
求微分方程(y+x2e-x)dx-xdy=0的通解y.
设u=e-xsinx/y,则э2u/эxэy在点(2,1/π)处的值________。
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0.(1)写出f(x)的带拉格朗日余项的一阶麦克劳林公式;(2)证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx.
按第一行展开[*]得到递推公式D5一D4=-x(D4-D3)一…=-x3(D2-D1).由于[*]=1一x+x2,D1=1一x,于是得[*]容易推出D5=一x5+x4一x2+D2=一x5+x4一x3+x2一x+1.
随机试题
关于足底动脉弓的叙述,下列哪项是正确的()
下列属于肿瘤显像剂的是
患者,女,68岁。晨起发现左手不能上举,左腿行走困难,急诊入院。查体:神志清,左上肢肌力Ⅳ级,左下肢肌力Ⅲ级,初步考虑为
根据山区、丘陵地区永久性水工建筑物洪水标准要求,对一级混凝土坝、浆砌石坝的水工建筑物来讲,在校核情况下的洪水重现期为()年。
下列说法正确的是()。
下列关于行业协会性质的说法中,错误的是()。
下列选项表述正确的是()。
甲、乙分别独立开发出相同主题的发明,时间上甲比乙先完成。依据专利法规定,()。
香蕉叶斑病是一种严重影响香蕉树生长的传染病,它的危害范围遍及全球。这种疾病可由一种专门的杀菌剂有效控制,但喷洒这种杀菌剂会对周边人群的健康造成危害。因此,在人口集中的地区对小块香蕉林喷洒这种杀菌剂是不妥当的。幸亏规模香蕉种植园大都远离人口集中的地区,可以安
若把操作系统看作计算机系统资源的管理者,下列不属于操作系统所管理的资源的是
最新回复
(
0
)