首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
admin
2016-11-03
28
问题
求正交矩阵Q,将实对称矩阵A=
化为对角矩阵.
选项
答案
方法一 因A的特征多项式为 |λE一A|=(λ一2)
2
(λ一8), 故A的特征值为λ
1
=λ
2
=2,λ
3
=8. 现分别求出属于它们的线性无关的特征向量. 当λ
1
=λ
2
=2时,解(2E一A)X=0.由 [*] 得到属于λ
1
=λ
2
=2的线性无关的特征向量为 α
1
=[一1,1,0]
T
,α
2
=[一1,0,1]
T
. 用施密特方法将α
1
与α
2
正交化,为此令β
1
=α
1
=[一1,1,0]
T
,则 β
2
=α
2
[*] 于是β
1
,β
2
为相互正交的特征向量. 当λ
3
=8时,解(8E-A)X=0.因 [*] 由基础解系的简便求法知,属于λ=8的特征向量为 α
3
=[1,1,1]
T
. 将β
1
,β
2
,α
3
单位化分别得到 [*] 则所求的正交矩阵 Q=[η
1
,η
2
,η
3
]=[*] 方法二 因A有二重特征值λ
1
=λ
2
=2,可用基础解系正交化的方法求出正交矩阵. 已知α
1
=[一1,1,0]
T
为属于λ
1
=2的一个特征向量.设属于λ
1
=2的另一特征向量为[x
1
,x
2
,x
3
]
T
=X.下求X使之与α
1
正交. 因X为λ
1
=2的另一特征向量,故必满足系数矩阵为①的方程,即 [*] 故 x
1
+x
2
+x
3
=0. ② 又X与α
1
正交,有X
T
α
1
=0,即 一x
1
+x
2
=0. ③ 联立式②、式③得到 [*] 故 X=[一1/2,一1/2,1]
T
, 则α
1
,X,α
3
为两两正交的向量组,将其单位化得到 [*] 于是所求的正交矩阵为 Q=[η
1
,η
2
,η
3
]=[*]
解析
一般用施密特正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角矩阵.但如A的特征值中含有一个二重特征值,也可不必用施密特正交化的方法,而用基础解系正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角阵.
其一般步骤是先求出二次型矩阵的特征值、特征向量,将属于同一特征值的线性无关的特征向量正交化,再将所有特征向量单位化,使这些正交单位特征向量为列向量所构成的矩阵即为所求的正交矩阵,它也是正交变换的变换矩阵.
转载请注明原文地址:https://kaotiyun.com/show/cTu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
从5个数:1,2,3,4,5中任取3个数,再按从小到大排列,设X表示中间那个数,求X的概率分布.
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
某保险公司开展养老保险业务,当存入R。(单位:元)时,t年后可得到养老金R0=R0eat(a>O)(单位:元),另外,银行存款的年利率为r,按连续复利计息,问t年后的养老金现在价值是多少(即养老金的现值是多少)?
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.证明an+2=2/(n+1)an,n=1,2,…;
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:T=问平均内径μ取何值时,销售
设二维随机变量(X,Y)在矩形域D={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记U=求概率P{U>0|V=0}.
随机试题
下列属于主物和从物关系的是()
患者,女,45岁,近2年来反复出现多发口腔溃疡,两个月前劳累后出现左膝关节肿痛,双下肢皮肤结节红斑伴疼痛,一周前突发右眼视物不清,化验ESR增快,ANA阴性,最可能的诊断是
应用最多的立柱式X线管支架是
深立井井筒施工时,为了增大通风系统的风压,提高通风效果,合理的通风方式是()。
下列不属于企业投资性房地产的是()。
具有发行的银行、政府的银行、银行的银行三大职能的银行是()。
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
不同AS之间使用的路由协议是()。
SaveEnergyatHomeOntheaverage,Americanswasteasmuchenergyastwo-thirdsoftheworld’spopulationconsumes.That’s(1)
Whatwillthemanmostprobablydo?
最新回复
(
0
)