首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
admin
2016-11-03
32
问题
求正交矩阵Q,将实对称矩阵A=
化为对角矩阵.
选项
答案
方法一 因A的特征多项式为 |λE一A|=(λ一2)
2
(λ一8), 故A的特征值为λ
1
=λ
2
=2,λ
3
=8. 现分别求出属于它们的线性无关的特征向量. 当λ
1
=λ
2
=2时,解(2E一A)X=0.由 [*] 得到属于λ
1
=λ
2
=2的线性无关的特征向量为 α
1
=[一1,1,0]
T
,α
2
=[一1,0,1]
T
. 用施密特方法将α
1
与α
2
正交化,为此令β
1
=α
1
=[一1,1,0]
T
,则 β
2
=α
2
[*] 于是β
1
,β
2
为相互正交的特征向量. 当λ
3
=8时,解(8E-A)X=0.因 [*] 由基础解系的简便求法知,属于λ=8的特征向量为 α
3
=[1,1,1]
T
. 将β
1
,β
2
,α
3
单位化分别得到 [*] 则所求的正交矩阵 Q=[η
1
,η
2
,η
3
]=[*] 方法二 因A有二重特征值λ
1
=λ
2
=2,可用基础解系正交化的方法求出正交矩阵. 已知α
1
=[一1,1,0]
T
为属于λ
1
=2的一个特征向量.设属于λ
1
=2的另一特征向量为[x
1
,x
2
,x
3
]
T
=X.下求X使之与α
1
正交. 因X为λ
1
=2的另一特征向量,故必满足系数矩阵为①的方程,即 [*] 故 x
1
+x
2
+x
3
=0. ② 又X与α
1
正交,有X
T
α
1
=0,即 一x
1
+x
2
=0. ③ 联立式②、式③得到 [*] 故 X=[一1/2,一1/2,1]
T
, 则α
1
,X,α
3
为两两正交的向量组,将其单位化得到 [*] 于是所求的正交矩阵为 Q=[η
1
,η
2
,η
3
]=[*]
解析
一般用施密特正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角矩阵.但如A的特征值中含有一个二重特征值,也可不必用施密特正交化的方法,而用基础解系正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角阵.
其一般步骤是先求出二次型矩阵的特征值、特征向量,将属于同一特征值的线性无关的特征向量正交化,再将所有特征向量单位化,使这些正交单位特征向量为列向量所构成的矩阵即为所求的正交矩阵,它也是正交变换的变换矩阵.
转载请注明原文地址:https://kaotiyun.com/show/cTu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 D
2
证明下列极限都为0;
设f(x)在(-∞,+∞)上可导,(1)若f(x)为奇函数,证明fˊ(x)为偶函数;(2)若f(x)为偶函数,证明fˊ(x)为奇函数;(3)若f(x)为周期函数,证明fˊ(x)为周期函数.
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
行列式为f(x),则方程f(x)=0的根的个数为
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续;(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续;(Ⅲ)f(x,y)在点(xo,yo)处可微;(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在.
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解.设y=y(x)是该方程满足y(0)=0,y’(0)=0的特解,求
将n个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计:试当n=1500时求舍位误差之和的绝对值大于15的概率;
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:一年获利润不少于40000元的概率β;
随机试题
氧气自动切割的必要条件之一是燃点要高于熔点。()
科斯定律的理论前提是
呼吸衰竭的血气诊断标准是
企业法律顾问的工作原则是()
某高速公路工程全长160km,跨甲、乙两省市,划分为甲1、甲2、甲3和乙1、乙2、五个施工合同段,并相应设置现场监理机构。请按照监理规范的要求选择适当的监理组织形式,画出监理组织结构图,并分析该组织模式的优缺点。
以下不属于员工动态特征的是()。
女性,80岁。慢性咳嗽咳痰20余年,冬季加重。近5年活动后气促。1周前感冒后痰多,气促加剧。近2天嗜睡。血白细胞18.6×109/L,中性粒细胞占90%,动脉血气:pH7.29,PaCO280mmHg,PaO247mmHg,BE-3.5mmol/L引起
二战后世界经济走向统一的过程中,仍然存在着多样性,出现了“两种体系、三种国家”,下列不属于社会主义国家经济类型的是()。
交管局要求司机在通过某特定路段时,在白天也要像晚上一样使用大灯,结果发现这条路上的年事故发生率比从前降低了15%。他们得出结论说:如果在全市范围内都推行该项规定会同样地降低事故发生率。以下哪项如果为真.最能支持上述论证的结论?
在TCP/IP网络中,主机A和主机B通过一路由器互联,提供两主机应用层之间通信的层是(248),提供机器之间通信的层是(249),具有IP层和网络接口层的设备是(250);在A与路由器和路由器与B使用不同物理网络的情况下,主机A和路由器之间传送的数据帧与路
最新回复
(
0
)