首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
求正交矩阵Q,将实对称矩阵A=化为对角矩阵.
admin
2016-11-03
42
问题
求正交矩阵Q,将实对称矩阵A=
化为对角矩阵.
选项
答案
方法一 因A的特征多项式为 |λE一A|=(λ一2)
2
(λ一8), 故A的特征值为λ
1
=λ
2
=2,λ
3
=8. 现分别求出属于它们的线性无关的特征向量. 当λ
1
=λ
2
=2时,解(2E一A)X=0.由 [*] 得到属于λ
1
=λ
2
=2的线性无关的特征向量为 α
1
=[一1,1,0]
T
,α
2
=[一1,0,1]
T
. 用施密特方法将α
1
与α
2
正交化,为此令β
1
=α
1
=[一1,1,0]
T
,则 β
2
=α
2
[*] 于是β
1
,β
2
为相互正交的特征向量. 当λ
3
=8时,解(8E-A)X=0.因 [*] 由基础解系的简便求法知,属于λ=8的特征向量为 α
3
=[1,1,1]
T
. 将β
1
,β
2
,α
3
单位化分别得到 [*] 则所求的正交矩阵 Q=[η
1
,η
2
,η
3
]=[*] 方法二 因A有二重特征值λ
1
=λ
2
=2,可用基础解系正交化的方法求出正交矩阵. 已知α
1
=[一1,1,0]
T
为属于λ
1
=2的一个特征向量.设属于λ
1
=2的另一特征向量为[x
1
,x
2
,x
3
]
T
=X.下求X使之与α
1
正交. 因X为λ
1
=2的另一特征向量,故必满足系数矩阵为①的方程,即 [*] 故 x
1
+x
2
+x
3
=0. ② 又X与α
1
正交,有X
T
α
1
=0,即 一x
1
+x
2
=0. ③ 联立式②、式③得到 [*] 故 X=[一1/2,一1/2,1]
T
, 则α
1
,X,α
3
为两两正交的向量组,将其单位化得到 [*] 于是所求的正交矩阵为 Q=[η
1
,η
2
,η
3
]=[*]
解析
一般用施密特正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角矩阵.但如A的特征值中含有一个二重特征值,也可不必用施密特正交化的方法,而用基础解系正交化的方法求出正交矩阵Q,使Q
-1
AQ为对角阵.
其一般步骤是先求出二次型矩阵的特征值、特征向量,将属于同一特征值的线性无关的特征向量正交化,再将所有特征向量单位化,使这些正交单位特征向量为列向量所构成的矩阵即为所求的正交矩阵,它也是正交变换的变换矩阵.
转载请注明原文地址:https://kaotiyun.com/show/cTu4777K
0
考研数学一
相关试题推荐
[*]
[*]
A、 B、 C、 D、 A
[*]
A、 B、 C、 D、 B
设X服从[a,b]上的均匀分布,证明αX+β(α>0)服从[aα+β,bα+β]上的均匀分布.
3个电子元件并联成一个系统,只有当3个元件损坏2个或2个以上时,系统便报废.已知电子元件的寿命服从参数为1/1000的指数分布,求系统的寿命超过1000h的概率.
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=__________.
(1998年试题,九)设y=f(x)是区间[0,1]上的任一非负连续函数.试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在区间[x0,1]上以y=f(x)为曲边的曲边梯形面积;
(2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。且F’(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
随机试题
能够充分伸展背阔肌的方式是()。
糖尿病患者尿量增多的原因是
人体内天然对比度较好的部位是
针灸治疗心脾亏虚证之不寐,配穴为针灸治疗肝阳上扰证之不寐,配穴为
小儿泌尿系解剖特点正确的是
证券交易所上市证券的清算和交收由登记结算公司集中完成。()
试述注意的规律与幼儿活动的关系。
窦娥:关汉卿:元朝
Electriccarsaregettingcheaperandtheirsalesareontherise,buttheirfuturesuccessmaydependonditchingakey【C1】____
Accordingtotheprofessor,whatistheproblemwithvisualstereotypes?
最新回复
(
0
)