首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=0,则( ).
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A3=0,则( ).
admin
2019-05-10
30
问题
[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵,若A
3
=0,则( ).
选项
A、E—A不可逆,E+A不可逆
B、E—A不可逆,E+A可逆
C、E一A可逆,E+A可逆
D、E—A可逆,E+A不可逆
答案
C
解析
利用命题2.2.1.4及命题2.1.2.6求之.
解一 易求得 (E—A)(E+A+A
2
)=E—A
3
=E,
(E+A)(E-A+A
2
)=E+A
3
=E.
由命题2.2.1.4知E一A可逆,E+A也可逆.仅(C)入选.
解二 由A
3
=O知A为幂零矩阵,故其特征值λ
1
=λ
2
=…=λ
n
=0,因而E—A与E+A的n个特征值均为μ
1
=μ
2
=…=μ
n
=1,故E一A与E+A没有零特征值,由命题2.1.2.6知,它们均可逆.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/cjV4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,+∞)内可导且f(0)=1,f′(χ)<f(χ)(χ>0).证明:f(χ)<eχ(χ>0).
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设f(χ)在χ=a处二阶可导,证明=f〞(a).
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
设n阶矩阵A满足A2+A=3E,则(A-3E)-1=_______.
设A,B都是n阶可逆矩阵,则().
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设2n阶行列式D的某一列元素及其余子式都等于a,则D=()
随机试题
精浆免疫抑制因子的主要成分
下列哪项不是结核性脑膜炎的并发症
甲状腺危象的临床表现是()。
设总体X~N(0,σ2),X1,X2,Xn是来自总体的样本,则σ2的矩估计是:
足值货币的基本特征是()。
关于《史记》,下列说法正确的一项是()。
设A为n阶方阵,且满足A2=3A,E为n阶单位矩阵.如果A≠O,证明3E-A不可逆.
薬を飲みました 、熱が下がりません。
Wemaylookattheworldaroundus,butsomehowwemanagenottoseeituntilwhateverwe’vebecomeusedtosuddenlydisappears.
CanTeachingGrammarReallyBeFun?【T1】______amongaverageteachers【T1】______■Teachinggrammarisboring■Grammarcanbeta
最新回复
(
0
)