首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵,α1,α2,…,αn为n维非零列向量,且满足αiTA-1αj=0(i≠j;i,j=1,2,…,n).试证:向量组α1,α2,…,αn线性无关.
设A为n阶正定矩阵,α1,α2,…,αn为n维非零列向量,且满足αiTA-1αj=0(i≠j;i,j=1,2,…,n).试证:向量组α1,α2,…,αn线性无关.
admin
2021-11-09
67
问题
设A为n阶正定矩阵,α
1
,α
2
,…,α
n
为n维非零列向量,且满足α
i
T
A
-1
α
j
=0(i≠j;i,j=1,2,…,n).试证:向量组α
1
,α
2
,…,α
n
线性无关.
选项
答案
设存在数k
1
,k
2
,…,k
n
,使得 k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0. 上式两端左边乘α
i
T
A
-1
,由α
i
T
A
-1
α
j
=0(i≠j;i,j=1,2,…,n),可得 k
i
α
i
T
A
-1
α
i
=0(i=1,2,…,n). 因A为正定矩阵,则A
-1
也为正定矩阵,且α
i
≠0,故α
i
T
A
-1
α
i
>0.于是,k
i
=0(i=1,2,…,n).所以向量组α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/cqy4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且.证明:存在ε∈(a,b),使得f"(ε)﹤0.
证明:,其中a﹥0为常数。
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:.
交换积分次序并计算.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解。
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设A,B为n阶正定矩阵,证明:A+B为正定矩阵。
设二次型xTAx=ax12+2x22-x32+8x1x2+2bx1x3+2cx2x3,实对称矩阵A满足AB=0,其中B=。(Ⅰ)用正交变换将二次型化为标准形,并写出所作的正交变换;(Ⅱ)判断矩阵A与B是否合同,并说明理由。
设二次型f(χ1,χ2,χ3)=χTAχ=3χ12+aχ22+3χ33-4χ1χ2-8χ1χ3-4χ2χ3,其中-2是二次型矩阵A的一个特征值.(Ⅰ)用正交变换将二次型f化为标准形,并写出所用正交变换;(Ⅱ)如果A*+kE是正定矩阵,
设A为四阶实对称矩阵,且A2+2A一3E=O,若r(A—E)=1,则二次型xTAx在正交变换下的标准形为()
随机试题
申屠丞相嘉者,梁人,从高帝击项籍,迁为队率。从击黥布军,为都尉。孝文时,嘉迁为御史大夫。张苍免相,孝文帝欲用皇后弟窦广国为丞相,日:“恐天下以吾私广国。”广国贤有行,故欲相之,念久之不可,而高帝时大臣又皆多死,馀见无可者,乃以御史大夫嘉为丞相,因故邑封为安
Itisinterestingtoobservethewayin【61】childrensooftenreactagainsttheirparents’ideas,whileatthesametime【62】their
关于蛋白质分子三级结构的描述,其中错误的是
5根弹簧系数均为k的弹簧,串联与并联时的等效弹簧刚度系数分别为:
在双代号时标网络计划中( )。
简述我国检验检疫机构的基本任务。
A股份有限公司共有资金1000元,其中普通股600万元,资本成本为25%;3年期银行借款400元,年利率为9.9%,每年付息一次,到期一次还本,筹资费用率为1%;该公司所得税税率为25%。2016年该公司有甲、乙两个投资方案,初始投资额均为800
(2016年)甲食品厂为增值税一般纳税人,主要从事食品的生产和销售业务,2015年2月有关经济业务如下:(1)购进生产用原材料取得增值税专用发票注明税额26000元;购进办公设备取得增值税专用发票注明税额8500元;支付包装设计费取得增值税专用发票注明
根据以下资料,回答下列问题。2011年,农村居民高收入户人均纯收入的同比增长幅度约比低收入户高:
下图所示的调制方式是(),若载波频率为2400Hz,则码元速率为()。
最新回复
(
0
)