首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
外语
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L31】________at p
History of weather forecasting Early methods Almanacs connected the weather with the positions of different【L31】________at p
admin
2022-09-09
47
问题
History of weather forecasting
Early methods
Almanacs connected the weather with the positions of different【L31】________at particular times.
Invention of weather instruments
A hydrometer showed levels of【L32】________, (Nicholas Cusa 1450)
Temperature variations — first measured by a thermometer containing【L33】________
(Galileo Galilei 1593)
A barometer indicated air pressure (Evangelista Torricelli 1645)
Transmitting weather information
The use of the【L34】________allowed information to be passed around the world.
Daily【L35】________were produced by France.
Producing a weather forecast
Weather observation stations are found mostly at【L36】________around the country.
Satellite images use the colour orange to show【L37】________
The satellites give so much detail that meteorologists can distinguish a particular【L38】________
Information about the upper atmosphere is sent from instruments attached to a【L39】________
Radar is particularly useful for following the movement of【L40】________
【L37】
I work for the National Weather Service and as part of your course on weather patterns, I’ve been asked to talk to you about how we predict the weather. We’re so used to switching on our TVs and getting an up-to-date weather forecast at any time of day or night that we probably forget that this level of sophistication has only been achieved in the last few decades and weather forecasting is actually an ancient art. So I want to start by looking back into history.
The earliest weather forecasts appeared in the 1500s in almanacks, which were lists of information produced every year.
Their predictions relied heavily on making connections between the weather and where the planets were in the sky
on certain days. In addition, predictions were often based on information like if the fourth night after a new moon was clear, good weather was expected to follow.
But once basic weather instruments were invented, things slowly started to change. In the mid-fifteenth century a man called Nicholas Cusa, a German mathematician,
designed a hygrometer which told people how much humidity there was in the air
. To do this, Cusa put some sheep’s wool on a set of scales and then monitored the change in the wool’s weight according to the air conditions.
A piece of equipment we all know and use is the thermometer. Changes in temperature couldn’t really be measured until the Italian Galileo Galilei invented his thermometer in 1593. It wasn’t like a modern-day thermometer because
it had water inside it
instead of mercury. In fact, it wasn’t until 1714 that Gabriel Fahrenheit invented the first mercury thermometer. In 1643 another Italian called Evangelista Torricelli invented the first barometer which measured atmospheric pressure. This was another big step forward in more accurate weather predicting.
As time went on, during the 17th, 18th and 19th centuries, all these meteorological instruments were improved and developed and people in different countries began to record measurements relating to their local weather. However, in those days it was very difficult to send records from one part of the world to another so
it wasn’t possible for them to share their information until the electric telegraph became more widespread
. This meant that weather observations could be sent on a regular basis to and from different countries. By the 1860s, therefore, weather forecasts were becoming more common and accurate because they were based on observations taken at the same time over a wide area.
In 1863, France started building weather maps each day
.
This hadn’t been done before, and other nations soon followed. So that was the start of national weather forecasting and I’ll now tell you how we at the National Weather Centre get the information we need to produce a forecast.
Even today, one of the most important methods we use is observations which tell us what the weather is doing right now. Observation reports are sent automatically from equipment at a number of weather stations in different parts of the country.
They are nearly all based at airports
although a few are in urban centres. The equipment senses temperature, humidity, pressure and wind speed and direction. Meteorologists also rely really heavily on satellites which send images to our computer screens. What we see on our screens is bright colours.
Orange represents dry air
and bright blue shows moisture levels in the atmosphere. The satellites are located 22,000 miles above the surface of the Earth and it’s amazing that despite that distance
it’s possible for us to make out an individual cloud
and follow it as it moves across the landscape.
In addition to collecting data from the ground, we need to know what’s happening in the upper levels of the atmosphere. So a couple of times a day from many sites across the country, we send radiosondes into the air.
A radiosonde is a box containing a package of equipment and it hangs from a balloon
which is filled with gas. Data is transmitted back to the weather station.
Finally, radar. This was first used over 150 years ago and still, is. New advances are being made all the time and it is
one method for detecting and monitoring the progress of hurricanes
. Crucial information is shown by different colours representing speed and direction. Radar is also used by aircraft, of course.
All this information from different sources is put into computer models which are like massive computer programs. Sometimes they all give us the same story and sometimes we have to use our own experience to decide which is showing the most accurate forecast which we then pass on to you. So I hope next time you watch the weather forecast, you’ll think about how we meteorologists spend our time. And maybe I’ve persuaded some of you to study meteorology in more depth.
选项
答案
dry air
解析
本题询问卫星图用橘色来表示什么。录音原文中的represents是题目中show的同义替换,故空格处填入dry air“干燥空气”。
转载请注明原文地址:https://kaotiyun.com/show/d1nD777K
本试题收录于:
雅思听力题库雅思(IELTS)分类
0
雅思听力
雅思(IELTS)
相关试题推荐
请编写一个函数,函数的功能是删除字符串中的所有空格。例如,主函数中输入”asdafaaz67”,则输出为"asdafaaz67"。注意:部分源程序在文件PROG1.C中。请勿改动主函数mam和其他函数中的任何内容,仅在函数fun的
请编写一个函数fun,它的功能是:将SS所指字符串中所有下标为奇数位置上的字母转换为大写(若该位置上不是字母,则不转换)。例如,若输入”abc4EFg”,则应输出”aBc4EFg”。注意:部分源程序存在文件PROG1.C中。请
流程图是描述算法的很好的工具,一般的流程图中由几种基本图形组成。其中输入输出框的图形是
北京明华中学学生发展中心的小刘老师负责向校本部及相关分校的学生家长传达有关学生儿童医保扣款方式更新的通知。该通知需要下发至每位学生,并请家长填写回执。参照“结果示例1.png,~结果示例4.png”按下列要求帮助小刘老师编排家长信及回执:将文中所有的空
Somepeoplemakeyoufeelcomfortablewhentheyarearound.【B1】________Thesepeoplehavesomethingincommon.Andonceweknoww
Howmuchdirectsunshinedotomatoplantsactuallyneedeveryday?
CreatingartificialgillsBackgroundTakinginoxygen;mammals—lungs;fish—gillsLong-helddreams—humansswimm
Whatrecommendationsdoesthetutormakeaboutthereferencebooks?AAllBResearchmethodCMainBodyDConclusionE
HowtoChooseFlooringMaterialsSourceTherearesomeman-madematerialslike【L31】________Beforebeingused,material.underg
A、Strengtheningpeople’simmunitytoinfection.B、Betterunderstandingpatients’immunesystem.C、Helpingimproveoldpeople’sh
随机试题
患者,男,70岁。今日胸痛发作频繁,2小时前胸痛再次发作,含化硝酸甘油不能缓解。血压90/60mmHg,心律不整。心电图Ⅱ、Ⅲ、aVF导联ST段抬高呈弓背向上的单向曲线。应首先考虑的是
城市交通枢纽在城市中的布置可分为()。
根据《支付结算办法》的规定,签发票据时,可以更改的项目是( )。
发盘的撤回是指在发盘送达受盘人之前,将其撤回,以阻止其生效。发盘的撤销是指发盘已送达受盘人,即发盘生效之后将发盘取消,使其失去效力。()
某中学委托一服装厂加工校服,合同约定布料由学校提供,价值50万元,学校另支付加工费10万元,下列各项关于计算印花税的表述中,正确的是()。(2011年)
公路运输一批货物毛重25kg,体积0.80m×0.50m×0.75m,该批货物按()计费。
我国初中阶段设置以分科课程为主,综合课程为辅的新课程结构,并且积极倡导各地选择分科课程。()
中国对于()相当于美国对于()
小麦:麦穗:麦粒
Dismissinganincompetentstaffcanbeanythingbut______.
最新回复
(
0
)