首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=( ).
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=( ).
admin
2022-06-30
28
问题
设A=
,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=( ).
选项
A、3
B、5
C、3或-5
D、5或-3
答案
C
解析
因为AX=0的任一非零解都可由a线性表示,所以AX=0的基础解系只含一个线性无关的解向量,从而r(A)=2.
由A=
得
a-5=-2或a+5=0,解得a=3或-5,应选C.
转载请注明原文地址:https://kaotiyun.com/show/d2f4777K
0
考研数学二
相关试题推荐
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y},则等于()
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是().
设y=f(x)是方程y’’一2y’+4y=0的一个解,且f’(x0)>0,f’(x0)=0,则函数f(x)在点x0处()
下列差分方程中,不是二阶差分方程的是[].
下列命题中正确的是()①如果矩阵AB=E,则A可逆且A—1=B;②如果n阶矩阵A,B满足(AB)2=E,则(BA)2=E;③如果矩阵A,B均为n阶不可逆矩阵,则A+B必不可逆;④如果矩阵A,B均为n阶不可逆矩阵,则AB必不可逆。
如图1一3一I,连续函数y=f(x)在区间[一3,一2],[2,3]上的图形分别是直径为1的上、下半圆周,在区间[一2,0],[0,2]的图形分别是直径为2的下、上半圆周。设F(x)=∫0xf(t)dt,则下列结论正确的是()
设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为().
设函数F(x)=max{f1(x),f2(x))的定义域为(-1,1),其中f1(x)=x+1,f2(x)=(x+1)2,试讨论F(x)在x=0处的连续性与可导性.
(Ⅰ)叙述并证明费马(Fermat)定理(即可导函数存在极值点的必要条件);(Ⅱ)叙述并证明极值的第一充分条件,举例说明此充分条件并非必要条件.
随机试题
Somepeopleworryaboutmycollectingofthosefascinatingbirdsandanimalsthattheypaytoseeinthezoo.Oneofthequestio
A.精囊B.前列腺C.睾丸D.附睾E.阴茎海绵体属于输精管道的是()
慢性淋巴细胞白血病的血液学特点不正确的是
A.阳斑B.阴斑C.麻疹D.风疹E.隐疹皮下斑点隐隐稀少,色淡红,压之不退,伴诸虚症状,此为
刘某,男,46岁,年幼时父母离异,现在跟父亲和姐姐一起生活,不再与母亲来往。刘某小学时特别调皮,经常惹事,父亲脾气暴躁,常对他拳脚相加。刘某与父亲的关系一直很紧张,和姐姐则比较贴心。1992年,刘某因严重犯罪被判无期徒刑、剥夺政治权利终身。服刑期间,刘某因
下列说法错误的有()。
近年来,我国有些地方尝试向低收入家庭发放教育券,以帮助困难家庭的子女能够获得平等的教育机会,体现教育公平的目的。下列关于教育券的说法中,正确的有()。
[2008年MBA真题]郑女士:衡远市过去十年的GDP(国内生产总值)增长率比易阳市高,因此衡远市的经济前景比易阳市好。胡先生:我不同意你的观点。衡远市的GDP增长率虽然比易阳市高,但易阳市的GDP数值却更大。以下哪项最为准确地概括了郑女士和胡先生争议的焦
在关系数据库设计中,关系模式是用来记录用户数据的()。
OneSaturday,MarkandJanedecidedtogotoahillneartheirvillage.Theymadesomefoodtotakealong【C1】______lunch.Thetw
最新回复
(
0
)