设f(u)是连续函数,证明:∫0πxf(sinx)dx=π/2∫0πf(sinx)dx,并求∫0π

admin2022-06-30  36

问题 设f(u)是连续函数,证明:∫0πxf(sinx)dx=π/2∫0πf(sinx)dx,并求∫0π

选项

答案I=∫0πxf(sinx)dx[*]614∫π0(π-t)f(sint)(-dt) =π∫0πf(sint)dt-∫0πtf(sint)dt=π∫0πs(sinx)dx-∫0πxf(sinx)dx =π∫0πf(sinx)dt-I, 则∫0πxf(sinx)dx=π/2∫0πf(sinx)dx. [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/d7bD777K
0

相关试题推荐
随机试题
最新回复(0)