首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=(1,一2,2)T是二次型xTAx=一4x1x2+4x1x3—8x2x3矩阵A的特征向量,求正交变换化二次型为标准形,并写出所用正交变换.
已知α=(1,一2,2)T是二次型xTAx=一4x1x2+4x1x3—8x2x3矩阵A的特征向量,求正交变换化二次型为标准形,并写出所用正交变换.
admin
2019-02-26
63
问题
已知α=(1,一2,2)
T
是二次型x
T
Ax=
一4x
1
x
2
+4x
1
x
3
—8x
2
x
3
矩阵A的特征向量,求正交变换化二次型为标准形,并写出所用正交变换.
选项
答案
二次型矩阵A=[*].设α=(1,一2,2)
T
是矩阵A属于特征值λ的特征向量,则 [*] 于是 [*] 从而A=[*].由特征多项式 [*] 可知矩阵A的特征值为0,0,9. 对λ=0,由(0E一A)x=0得基础解系α
1
=(2,1,0)
T
,α
2
=(一2,0,1)
T
. 因为α
1
,α
2
不正交,故需Schmidt正交化,即 β
1
=α
1
=(2,1,0)
T
,β
2
=α
2
一[*](一2,4,5)
T
. 把β
1
,β
2
,α单位化,得 [*] 那么经正交变换 [*] 因此,二次型化为标准形x
T
Ax=y
T
Ay=[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/dF04777K
0
考研数学一
相关试题推荐
设总体X~E(λ),且X1,X2,…,Xn为总体X的简单随机样本,令则E(S12)=_______.
设A为三阶实对称矩阵,为方程组AX=0的解,为方程组(2E—A)X=0的一个解,|E+A|=0,则A=______.
(I)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似.(Ⅱ)设求可逆矩阵P,使得P-1AP=B.
设矩阵不可对角化,则a=______.
设总体X服从标准正态分布,(X1,X2,…,Xn)为总体的简单样本则().
设矩阵有三个线性无关的特征向量,则a和b应满足的条件为().
已知线性方程组有解(1,-1,1,-1)T。(Ⅰ)用导出组的基础解系表示通解;(Ⅱ)写出x=x时的全部解。
设线性方程组(Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
随机试题
正常心脏后前位不易观察到的是
右下腹疼痛拒按,或右足屈而不伸,伸则痛甚,甚则局部肿痞,或时时发热,自汗恶寒,舌苔薄腻而黄,脉滑数。方剂选用
气雾剂的优点有()。
《建设工程安全生产管理条例》制定的基本法律依据包括()。
若企业不打算享受现金折扣优惠,则应尽量推迟付款的时间。()
如果会计师事务所非审计项目组成员的主要近亲属,通过继承从审计客户获得直接经济利益,则()。
《与朱元思书》是八年级下册第五单元的一篇课文,如果让你给八年级的学生执教这篇课文,你会怎么做呢?请按要求完成后面的题目:附:《与朱元思书》课文与朱元思书①
缺陷补偿,是指个体在充当社会角色时不可能事事成功,当自我角色目标失败时,常常可能会对相关的社会角色的重要性做重新评价,从而进行自我定义以补偿自己角色缺陷。根据上述定义,下列属于缺陷补偿的是()。
求|cos(x+y)|dxdy,其中D={(x,y)|
A、Assoonasshestarteduniversity.B、Aftershedidsomeresearch.C、Aftershetookaliteraturecourse.D、Whenshemetagood
最新回复
(
0
)