首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Ax=0的一个基础解系,则A*x=0的基础解系可为( )
admin
2017-09-07
408
问题
设A=(α
1
,α
2
,α
3
,α
4
)是4阶矩阵,A
*
为A的伴随矩阵.若(1,0,1,0)
T
是方程组Ax=0的一个基础解系,则A
*
x=0的基础解系可为( )
选项
A、α
1
,α
3
.
B、α
1
,α
2
.
C、α
1
,α
2
,α
3
.
D、α
2
,α
3
,α
4
.
答案
D
解析
首先,4元齐次线性方程组A
*
x=0的基础解系所含解向量的个数为4一r(A
*
),其中r(A
*
)为A
*
的秩,因此求r(A
*
)是一个关键.其次,由Ax=0的基础解系只含1个向量,即4一r(A)=1,得r(A)=3,于是由r(A
*
)与r(A)的关系,知r(A
*
)=1,因此,方程组A
*
x=0的基础解系所含解向量的个数为4一r(A
*
)=3,故选项(A)、(B)不对.再次,由(1,0,1,0)
T
是方程组Ax=0或x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0的解,知α
1
+α
3
=0,故α
1
与α
3
线性相关,于是只有选项(D)正确.
转载请注明原文地址:https://kaotiyun.com/show/eRr4777K
0
考研数学一
相关试题推荐
已知曲线在直角坐标系中由参数方程给出:x=t+e-t,y=2t+e-2t(t≥0).(Ⅰ)证明该参数方程确定连续函数y=y(x),x∈[1,+∞).(Ⅱ)证明y=y(x)在[1,+∞)单调上升且是凸的.(Ⅲ)求y=y
设随机变量X,Y独立同分N(μ,σ2),其联合密度函数f(x,y)在(2,2)处有驻点,且f(0,0)=,则(X,Y)服从的分布是_______.
函数u=xyz2在条件x2+y2+z2=4(x>0,y>0,z>O)下的最大值是_______.
设n维列向量α=,矩阵A=E-4ααT,其中E是n阶单位矩阵,若n维列向量β=(1,1,…,1)T,则向量Aβ的长度为
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,(Ⅰ)求a的值;(Ⅱ)求齐次方程组(i)的解;(Ⅲ)求齐次方程(ii)的解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T.计算ABT与ATB;
当x→0时,下列四个无穷小中,哪一个是比其他三个高阶的无穷小()
设y=y(x)在[0,+∞)可导,在x∈(0,+∞)处的增量满足△y(1+△y)=a,当△x→0时a是△x的等价无穷小,又y(0)=1,则y(x)=()
随机试题
试述牵连犯的内容。
用于病毒克隆纯化的方法是()。[2010年真题]
有关铁的描述,正确的是
城市公共财政的首要任务是()。
下列关于工程项目平行承包模式特点的说法中,正确的是()。
企业在报告年度资产负债表日至财务报告批准日之间取得确凿证据,表明某项资产在报告日已发生减值的,应作为非调整事项进行处理。( )
甲将行李寄存于火车站寄存处,提取时被告知该行李丢失。甲要求寄存处承担赔偿责任的诉讼时效为()。(2009年原制度)
根据《票据法》的规定,下列选项中,属于因时效而致使票据权利消灭的情形有()。
()组织结构主要适用于规模巨大、产品或服务种类较多的企业。
一个四边形广场,它的四边长分别是60米、72米、96米、84米,现在四边上都植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?
最新回复
(
0
)