首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶非零矩阵,满足A2=0,则线性非齐次方程AX=b的线性无关的解向量个数是( ).
设A是三阶非零矩阵,满足A2=0,则线性非齐次方程AX=b的线性无关的解向量个数是( ).
admin
2016-11-03
61
问题
设A是三阶非零矩阵,满足A
2
=0,则线性非齐次方程AX=b的线性无关的解向量个数是( ).
选项
A、1个
B、2个
C、3个
D、4个
答案
C
解析
利用下述结论求之.
设AX=0的基础解系为α
1
,α
2
,…,α
n-r
;β为AX=b的一特解,则AX=b共有n-r+1个线性无关的解向量,且β,α
1
,α
2
,…,α
n-r
就是AX=b的n一r+1个线性无关的解.
先求r(A).因A
2
=A.A=O,故
r(A)+r(A)=2r(A)≤3,
即 r(A)≤3/2, 亦即 r(A)≤1.
又 A≠O, r(A)≥1,
故 r(A)=1,
从而n-r+1=3-r(A)+1=3-1+1=3,
即AX=b有3个线性无关的解向量.仅(C)入选.
转载请注明原文地址:https://kaotiyun.com/show/fTu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
在某公共汽车站甲、乙、丙三人分别等1,2,3路公共汽车.设每个人等车时间(单位:min)均服从[0,5]上的均匀分布,求三人中至少有两人等车时间不超过2min的概率.
证明下列函数是有界函数:
设y=y(x)是函数方程ln(x2+y2)=x+y-1在(O,1)处所确定的隐函数,求dy及dy|(0,1).
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
设函数z=f(x,y)在点(1,1)处可微,且f(1,1)=1,.
将函数f(x)=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
设有级数,则该级数的收敛半径为________.
随机试题
下列关于纤维蛋白溶解药的叙述,不正确的是
特殊感染性垃圾用什么垃圾袋装
某派出所以扰乱公共秩序为由扣押了高某的拖拉机。高不服,以派出所为被告提起行政诉讼。诉讼中,法院认为被告应是县公安局,要求变更被告,高不同意。法院下列做法中正确的是()。
烟光药、黑火药的Ⅰ类危险场所采用的仪表,应选择适应本场所的()。
实施性施工进度计划的编制应结合工程施工的具体条件,并以()所确定的里程碑事件的进度目标为依据。
一国征收进口附加税的目的在于()。
下列有关乳酸菌的叙述,正确的是()。
平均而言,今天受过教育的人的读书时间明显少于50年前受过教育的人的读书时间。但是,现在每年销售的书册数却比50年前增加了很多。以下除哪项外都有助于解释上述现象?
一台微型计算机要与局域网连接,必须具有的硬件是___________。
A、Theyfollowtheleadoffamouspeople.B、Theyliketotrysomethingnew.C、Theycanmakefriendsthroughpracticingyogatoget
最新回复
(
0
)