首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,且存在可逆矩阵P=,使得P-1AP=,又A的伴随矩阵A*有特征值λ0,α=是A*的特征值λ0对应的特征向量. 计算(A*)-1;
设A为3阶实对称矩阵,且存在可逆矩阵P=,使得P-1AP=,又A的伴随矩阵A*有特征值λ0,α=是A*的特征值λ0对应的特征向量. 计算(A*)-1;
admin
2020-10-21
37
问题
设A为3阶实对称矩阵,且存在可逆矩阵P=
,使得P
-1
AP=
,又A的伴随矩阵A
*
有特征值λ
0
,α=
是A
*
的特征值λ
0
对应的特征向量.
计算(A
*
)
-1
;
选项
答案
记P=(α
1
,α
2
,α
3
),由P
-1
AP=[*] 则 A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)[*] 即 (Aα
1
,Aα
2
,Aα
3
)=(α
1
,2α
2
,—α
3
), 于是 Aα
1
=α
1
,Aα
2
=2α
2
,Aα
3
=α
3
; 故A的特征值为1,2,一1,其对应的特征向量分别为 [*] 因为A为3阶实对称矩阵,由实对称矩阵不同的特征值对应的特征向量是正交的,得 α
1
T
α
3
=一2—5a+2=0, α
2
T
α
3
=—2b—5(a+1)+1=0, 解得a=0,b=一2.则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/fU84777K
0
考研数学二
相关试题推荐
AB=0,A,B是两个非零矩阵,则
设函数z(x,y)由方程确定,其中F为可微函数,且F’2≠0,则=()[img][/img]
设x=y(x)由x3+3x2y-2y3=2确定,求y=y(x)的极值。
微分方程y"-4y’=x2+cos2x的特解形式为()。
设函数y=y(x)在(0,+∞)上满足,则y(x)=___.
设f(x)二阶可导,,且f(1)=1,证明:存在ε∈(0,1),使得f"(ε)-2f’(ε)=-2.
设D为xoy平面上的有界封闭区域,z=f(x,y)在D上连续,在D内可偏导且满足,若f(x,y)在D内没有零点,则f(x,y)在D上().
已知y=u(x)x是微分方程的解,则在初始条件|x=2下,上述微分方程的特解是y=_______.
[2007年]求微分方程y"(x+y′2)=y′满足初始条件y(1)=y′(1)=1的特解.
设f(x)是以ω为周期的连续函数,证明:一阶线性微分方程y’+ky=f(x)存在唯一的以ω为周期的特解,并求此特解,其中k≠0为常数.
随机试题
Thissummerthecity’sDepartmentofTransportationstartsanewbike-shareprogram.People【K1】________liveandworkinNewYork
Thereisanotherconversationwhichfromourpointofviewisequallyimportant,andthatistodonotwithwhatisreadbutwit
引起甲状腺弥漫肿大的病因包括
下列语句中,量和单位使用符合规范的有()。
2018年1—12月,全国房地产开发投资120264亿元,比上年增长9.5%。其中,住宅投资85192亿元,增长13.4%,比1—11月回落0.2个百分点,比上年提高4个百分点。按地区划分,2018年,东部地区房地产开发投资64355亿元,比上年增长10
接待()宾客,敬茶时应用右手提供服务。
A、睾丸鞘膜积液B、交通性鞘膜积液C、睾丸肿瘤D、腹股沟斜疝E、精索静脉曲张患者,男,22岁。发现右侧阴囊内鸡蛋大小肿块半年,无痛,平卧后无缩小。扪之有囊性感,透光试验(+)。最可能的诊断为()
患者一周前进食后右上腹痛明显,无明显发热。超声示胆囊大小为8.0cm×3.0cm,壁厚0.4cm,呈双边,囊内可见多发强光团,最大1.6cm,后伴声影,随体位改变有移动。右上腹相当于结肠肝曲位置见8.3cm×6.9cm不均匀光团,与胆囊界限不清,形态不规整
民族问题经常是与宗教问题相联系的,宗教是民族文化中很重要的组成部分。一族多教,一教多派,都可能导致民族宗教冲突。宗教社会学的“冲突派”学者认为,宗教是社会分裂的根源。他们的这些看法不免有失偏颇或夸大,但问题的严重性却是不言而喻的。根据这段文字可以推
我国土壤污染物主要是什么?()
最新回复
(
0
)