首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3是3维向量空间R3的一组基,则由基α1,到基α1+α2,α2+α3,α3+α1的过渡矩阵为
设α1,α2,α3是3维向量空间R3的一组基,则由基α1,到基α1+α2,α2+α3,α3+α1的过渡矩阵为
admin
2019-01-14
40
问题
设α
1
,α
2
,α
3
是3维向量空间R
3
的一组基,则由基α
1
,
到基α
1
+α
2
,α
2
+α
3
,α
3
+α
1
的过渡矩阵为
选项
A、
B、
C、
D、
答案
A
解析
如果3维向量空间的一组基(I):ξ
1
,ξ
2
,ξ
3
与另一组基(Ⅱ):η
1
,η
2
,η
3
之间有如下关系:η
j
=a
1j
ξ
1
+a
2j
ξ
2
+a
3j
ξ
3
(j=1,2,3),写成矩阵形式,就是η
2
,η
3
]=[ξ
1
,ξ
2
,ξ
3
]
其中a
ij
为常数(i,j=1,2,3),则称矩阵A=(a
ij
)
3×3
为由基(I)到基(Ⅱ)的过渡矩阵,现在容易得到
[α
1
+α
2
,α
2
+α
3
,α
3
+α
1
]=
.
因此所求过渡矩阵为A=
只有选项(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/fVM4777K
0
考研数学一
相关试题推荐
A和B均是m×n矩阵,秩r(A)+r(B)=n,若BBT=E且B的行向量是齐次方程组AX=0的解,P是M阶可逆矩阵,证明:矩阵pb的行向量是Ax=0的基础解系.
设f’(x)存在,求极限.其中a,b为非零常数.
证明:当x>1时
求曲线积分I=∫L2yzdx+(2z一z2)dy+(y2+2xy+3y)dz,其中L为闭曲线从原点向L看去,L沿顺时针方向.
3阶矩阵已知r(AB)小于r(A)和r(B),求a,b和r(AB).
设平面区域D是由坐标为(0,0),(0,1),(1,0),(1,1)的四个点围成的正方形.今向D内随机地投入10个点,求这10个点中至少有2个点落在曲线y=x2与直线y=x所围成的区域D1内的概率.
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布;(Ⅱ)Y的边缘分布;(Ⅲ)在X=0条件下,关于Y的条件分布.
设二次型χ12+χ22+χ32-4χ1χ2-4χ1χ3+2aχ2χ3经正交变换化为3y12+3y22+by32,求a,b的值及所用正交变换.
曲线在yOz平面上的投影方程为________。
设(x2sin3x—cos4x)dx,则有().
随机试题
大多数气田的天然气是可燃性气体,主要成分是(),还含有少量非烃气体。
在化工管路中,通常在管路的相对低点安装有排气阀。
术前常规禁食的主要目的是
干金苇茎汤与大黄牡丹汤共有的药物是仙方活命饮与透脓散共有的药物是
开放性气胸患者呼吸困难最主要的急救措施是()。
可转债持有人申报转股的可转债数量大于其实际可用可转债余额的,应按其申报数量办理转股。()
与以往的银行理财产品相比,代客境外理财产品具有的特点是()。
我国的反洗钱工作开始于2001年。2001年9月,中国人民银行成立了反洗钱工作领导小组。2002年9月,中国人民银行制定了《金融机构反洗钱规定》、《从民币大额和可疑支付交易报告管理办法》和《金融机构大额和可疑外汇资金交易报告管理办法》(简称“一规定两办法”
唐代前期是修史的“黄金时期”,相继问世了八部断代史书,号称“唐修八史”。下列选项不属于“唐修八史”的是()。
以下关系表达式中,其值为假的是:______。
最新回复
(
0
)