首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面曲线Ax2+2Bxy+Cy2=1 (C>0,AC—B2>0)为中心在原点的椭圆,求它的面积.
已知平面曲线Ax2+2Bxy+Cy2=1 (C>0,AC—B2>0)为中心在原点的椭圆,求它的面积.
admin
2018-11-21
53
问题
已知平面曲线Ax
2
+2Bxy+Cy
2
=1 (C>0,AC—B
2
>0)为中心在原点的椭圆,求它的面积.
选项
答案
椭圆上点(x,y)到原点的距离平方为d
2
=x
2
+y
2
,条件为Ax
2
+2Bxy+Cy
2
一1=0. 令F(x,y,λ)=x
2
+y
2
一A(Ax
2
+2Bxy+Cy
2
一1),解方程组 [*] 将①式乘x,②式乘y,然后两式相加得 [(1一Aλ)x
2
一Bλxy]+[一Bλxy+(1一Cλ)y
2
]=0, 即 x
2
+y
2
=λ(Ax
2
+2Bxy+Cy
2
)=λ, 于是可得d=[*]. 从直观知道,函数d
2
的条件最大值点与最小值点是存在的,其坐标不同时为零,即联立方程组F’
x
=0,F’
y
=0有非零解,其系数行列式应为零,即 [*] 该方程一定有两个根λ
1
,λ
2
,它们分别对应d
2
的最大值与最小值.因此,椭圆的面积为 [*]
解析
只需求椭圆的半长轴a与半短轴b,它们分别是椭圆上的点到中心(原点)的距离的最大值与最小值.因此,归结为求解条件极值问题.
转载请注明原文地址:https://kaotiyun.com/show/fZg4777K
0
考研数学一
相关试题推荐
设f(x)在(a,b)内可导,且f(a)=f(b)=0,f′(a)<0,f′(b)<0,则方程f′(x)在(a,b)内().
已知三元二次型XTAX的平方项系数全为0,设α=[1,2,一1]T且满足Aα=2α.(1)求该二次型的表示式;(2)求正交变换X=QY化该二次型为标准形,并写出所用坐标变换;(3)若A+kE正定,求k的取值.
已知曲线L为圆x2+y2=a2在第一象限的部分,则=________。
假设X是只可能取两个值的离散型随机变量,Y是连续型随机变量,则随机变量X+Y的分布函数()
已知A、B为三阶非零矩阵,且A=。β1=(0,1,-1)T,β2=(a,2,1)T,β3=(6,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求(Ⅰ)a,b的值;(Ⅱ)求Bx=0的通解。
设X1,X2,…,Xn,…相互独立且都服从参数为λ(λ>0)的泊松分布,则当n→∞时,以Ф(x)为极限的是()
设函数f(x)=1-,数列{xn}满足0<x1<1且xn+1=f(xn)。证明f(x)在(-1,1)上有且只有一个零点;
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f’’(0)以及极限
求极限
设n为正整数,利用已知公式In=∫0π/2sinnxdx=∫0π/2cosnxdx=I*,其中求下列积分:Jn=∫-11(x2-1)ndx.
随机试题
某糖果厂生产两种糖果,A种糖果每箱获利润40元,B种糖果每箱获利润50元,其生产过程分为混合、烹调、包装三道工序,下袁为每箱糖果生产过程中所需平均时间(单位:分钟)每种糖果的生产过程中,混合的设备至多能用12小时,烹调的设备至多能用30小时,包装的设备
竖井的井壁应是耐火极限不低于()的非燃烧体。
某农场拟于2006年初在某河流上游植树造林500公顷,需要各类投资共5000万元。农场将承包该林地并拟于2012年初择伐树木后,将林地无偿移交给地方政府。预计所伐木材销售净收入为每公顷12万元。由于流域水土得到保持,气候环境得到改善,预计流域内3万
社会主义核心价值体系是建设和谐文化的根本,它的基本内容包括()。
张某因犯罪被判处剥夺政治权利3年,在此期间,张某的下列行为中符合法律规定的是()。
党的十九大提出以党的政治建设为统领,全面推进党的政治建设、思想建设、组织建设、作风建设、纪律建设,把制度建设贯穿其中,并特别强调把党的政治建设摆在首位。党的政治建设的首要任务是()
嗅探器改变了网络接口的工作模式,使得网络接口____________。
有职工工资表(职工号、姓名、日期、基本工资、奖金、工资合计),其中“工资合计”等于同一行数据的“基本工资”与“奖金”之和,在职工工资表中插入一行数据时(设一次只插入一行数据)能实现自动计算“工资合计”列的值的代码是______。A)ALTERTABLE
下列叙述中正确的是
在标准ASCII编码表中,数字码、小写英文字母和大写英文字母的前后次序是()。
最新回复
(
0
)