首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f’(x)≥k>0,则在(0,+∞)内f(x)
若函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f’(x)≥k>0,则在(0,+∞)内f(x)
admin
2019-05-15
57
问题
若函数f(x)在[0,+∞)上连续,在(0,+∞)内可导,且f(0)<0,f’(x)≥k>0,则在(0,+∞)内f(x)
选项
A、没有零点.
B、至少有一个零点.
C、只有一个零点.
D、有无零点不能确定.
答案
C
解析
讨论函数的零点,一般要用连续函数在闭区间上的介值定理.根据拉格朗日中值定理,f(x)=f(0)+f’(ξ)x(0<ξ<x),得f(x)≥f(0)+kx.显然当x足够大时f(x)>0(事实上只需x>-f(0)/k),又f(0)<0,这就表明在(0,x)内存在f(x)的零点,又f’(x)>0,即有f(x)单调增加,从而零点唯一,故选(C).
转载请注明原文地址:https://kaotiyun.com/show/fbc4777K
0
考研数学一
相关试题推荐
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy’一4y=0,y(0)=0,y’(0)=1求y(x)的表达式.
方程y"一3y’+2y=2x的通解为___________.
已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段.计算曲线积分3x2ydx+(x3+x-2y)dy=_________.
经过点A(一1,2,3),垂直于直线L:且与平面∏:7x+8y+9z+10=0平行的直线方程是______.
设随机变量X与Y相互独立同分布,且都服从的0一1分布,则随机变量Z=max{X,Y}的分布律为________.
当k=________时,向量β=(1,k,5)能由向量α1=(1,-3,2),α2=(2,-1,1)线性表示.
设则关于f(x)的单调性的结论正确的是
在一个袋中装有a个白球,b个黑球,每次摸一球且摸后放回重复n次.已知摸到白球k次的条件下,事件B发生的概率为,则P(B)=_____________.
设f(x,y)=|x一y|φ(x,y),其中φ(x,y)在点(0,0)的某邻域内连续.则φ(0,0)=0是f(x,y)在点(0,0)处可微的
设在一次试验中A发生的概率为p,现进行n次独立试验,则A至少发生一次的概率为_______;而事件A至多发生一次的概率为_______.
随机试题
A注册会计师负责审计甲公司2012年度财务报表。在了解内部控制时,A注册会计师遇到下列事项,请代为做出正确的专业判断。(根据2009年新制度考题修订)职责分离要求将不相容的职责分配给不同员工。下列职责分离做法中正确的是()。
求极限
女,55岁,颈前区偶然发现一质硬、固定的无痛性肿块,应考虑为
对于三羧酸循环过程的叙述恰当的是
突发公共卫生事件的预防与应急准备中,国务院卫生行政主管部门按照分类指导、快速反应的要求,制定
六个月小儿,哪种表现最符合佝偻病性手足搐搦症
某化工机械厂封头冲压成形车间噪声危害严重。控制此噪声最有效的措施是()
国务院期货监督管理机构应当在受理期货公司设立申请之日起()个月内,根据审慎监管原则进行审查,作出批准或者不批准的决定。
2004年的巴塞尔条约主要创新在哪里?()
Oneofthemostcommontechniquesistoaddalloyingelementsthatinhibitthecorrosion.
最新回复
(
0
)