首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(数学一)已知二次型f(x,y,z)=3x2+2y2+2z2+2xy+2zx.(1)用正交变换把二次型f化为标准形,并写出相应的正交矩阵;(2)求函数f(x,y,z)在单位球面x2+y2+z2=1上的最大值和最小值.
(数学一)已知二次型f(x,y,z)=3x2+2y2+2z2+2xy+2zx.(1)用正交变换把二次型f化为标准形,并写出相应的正交矩阵;(2)求函数f(x,y,z)在单位球面x2+y2+z2=1上的最大值和最小值.
admin
2020-06-05
56
问题
(数学一)已知二次型f(x,y,z)=3x
2
+2y
2
+2z
2
+2xy+2zx.(1)用正交变换把二次型f化为标准形,并写出相应的正交矩阵;(2)求函数f(x,y,z)在单位球面x
2
+y
2
+z
2
=1上的最大值和最小值.
选项
答案
(1)二次型f所对应矩阵的特征多项式为 |A-AE|[*] 所以A的特征值为λ
1
=1,λ
2
=2,λ
3
=4. 当λ
1
=1时,解方程组(A-E)x=0.由 A-E=[*] 解得基础解系为p
1
=(﹣1,1,1)
T
,将其单位化得q
1
=[*] 当λ
2
=2时,解方程组(A-2E)x=0.由 A-2E=[*] 得基础解系为p
1
=(0,﹣1,1)T,将其单位化得q
2
=[*] 当λ
3
=4时,解方程组(A-4E)x=0.由 A-4E[*] 得基础解系为p
3
=(2,1,1)
T
,将其单位化得q
3
=[*].于是正交变换为 [*]或X’=PX 且把二次型f(x,y,z)化为x’
2
+2y’
2
+4z’
2
,其中X’=(x’,y’,z’),X=(z,y,z). (2)注意到 z
2
+y
2
+z
2
=X
T
X=X
T
PP
T
X=(P
T
X)
T
(P
T
X)=X’
T
X=x’
2
+y’
2
+z’
2
f(x,y,z)=zTAx=xTP[*]PTx=(P
T
x)
T
[*](P
T
x)=(x’)
T
[*](x’)=x’
2
+2y’
2
+4z’
2
这说明方程x
2
+y
2
+z
2
=1在正交变换下X’=PX化为方程x’
2
+y’
2
+z’
2
=1.函数f(x,y,z) 在单位球面x
2
+y
2
+z
2
=1上的最大值和最小值,也就是函数x’
2
+2y’
2
+4z’
2
在x’
2
+y’
2
+z’
2
=1上的最大值和最小值. 从而 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ffv4777K
0
考研数学一
相关试题推荐
若α1,α2,…,αs的秩为r,则下列结论正确的是().
设A,B为任意两个事件,且,P(B)>0,则下列选项必然成立的是()
下列矩阵中,不能相似对角化的矩阵是()
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设向量α1,α2,…,αs的秩为r,则()
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
(91年)设函数f(x)在[0,1]上连续,(0,1)内可导,且=f(0).证明在(0,1)内存在一点c,使f’(c)=0.
飞机以匀速v沿y轴正向飞行,当飞行到原点时被发现,随即从x轴上点(x0,0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2v.求导弹运行轨迹满足的微分方程及初始条件;
行列式=______。
已知二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准形为y12+y22,且Q的第3列为()T.(I)求矩阵A;(II)证明A+E为正定矩阵,其中E为3阶单位矩阵.
随机试题
前列腺肉瘤很少见,起源于生肾索的中胚层组织,包括中肾管和中肾旁管的终末部分,是一种极度恶性的肿瘤。前列腺肉瘤的病理变化正确的是:
国防科学技术研究的重要项目、成果属于()。
患者,男性,40岁,连日来在高温下工作。今日下午感头痛头晕,继而体温升高达40℃,出现颜面潮红,皮肤干燥无汗,神志模糊,急诊入院。给患者采取的护理措施中,不妥的是
目前,我国零数委托适用于()。
优先股股息在当年未足额分派时,能在以后年度补发的优先股,称为()
背景说明:你是宏远公司行政秘书高叶,下面是行政经理苏明需要你完成的工作几项任务。
教师因对学生的期待和热望而表现出更多的注意、关心和亲近,从而对学生的学习成绩产生极大影响,这是()。
未成年犯禁闭期间,每天放风两次,每次不少于()。
纯收入
FiveGoldenRulesforGivingAcademicPresentationsAcademicpresentationsaredifferentfromtheclassroompresentationsthats
最新回复
(
0
)