首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2019-05-11
49
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A|=[*]=(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠[*]时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]X=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
=[*];λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
=[*] [*] (2)当a=0时,λ
1
=λ
3
=1,因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当[*]的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/fyV4777K
0
考研数学二
相关试题推荐
设f(χ)∈C[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f′(η)+f(η)].
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.(1)求A的全部特征值;(2)当k为何值时,A+kE为正定矩阵?
设A为三阶实对称矩阵,且为A的不同特征值对应的特征向量,则a=_______.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设A=,且AX=0的基础解系含有两个线性无关的解向量,求AX=0的通解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3,且α1+α2=,α2+α3=,则方程组AX=b的通解为_______.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在ξ∈(a,b),使得f′(ξ)+f(ξ)g′(ξ)=0.
求z=z2+12χy+2y2在区域4χ2+y2≤25上的最值.
曲线y=x2+x(x<0)上曲率为的点的坐标是_________.
随机试题
下列不属于免征房产税的情形的是()
治疗臌胀水湿困脾证,应首选()
企业的财务活动不包括( )。
下列各项中,应确认为企业资产的有()。
当原始分数不呈正态分布时,()可以使其常态化。
甲种溶液含醋为72%,乙种溶液含醋为58%,第一次各取两种溶液若干,混合后溶液醋含量为62%,第二次如果每种溶液比原来都多取15升,混合后溶液中的醋含量为63.25%。问第一次混合时,甲、乙两种溶液各取多少升?()
邓小平指出:“如果现在再不实行改革,我们的现代化事业和社会主义事业就会被葬送”,开放是我国在历史转折关头做出的战略抉择,其深刻的国内和国际背景是
【B1】【B18】
Wemustleavethepartyatexactly9:00______we’llbelateforwork.
Walkingthroughmytrainyesterday,staggeringfrommyseattothebuffetandback,IcountedfivepeoplereadingHarryPottern
最新回复
(
0
)