首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
设A是4×5矩阵,ξ1=[1,一1,1,0,0]T,ξ2=[一1,3,一1,2,0]T,ξ3=[2,1,2,3,0]T,ξ4=[1,0,一1,l,-2]T都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ1,ξ2,ξ3,ξ4线性表出,若k1,k
admin
2019-08-12
43
问题
设A是4×5矩阵,ξ
1
=[1,一1,1,0,0]
T
,ξ
2
=[一1,3,一1,2,0]
T
,ξ
3
=[2,1,2,3,0]
T
,ξ
4
=[1,0,一1,l,-2]
T
都是齐次线性方程组Ax=0的解,且Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
线性表出,若k
1
,k
2
,k
3
,k
4
是任意常数,则Ax=0的通解是 ( )
选项
A、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
+k
4
ξ
4
B、k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
C、k
2
ξ
2
+k
3
ξ
3
D、k
1
ξ
1
+k
3
ξ
3
+k
4
ξ
4
答案
D
解析
Ax=0的任一解向量均可由ξ
1
,ξ
2
,ξ
3
,ξ
4
线性表出,则必可由ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组表出,且ξ
1
,ξ
2
,ξ
3
,ξ
4
的极大线性无关组即是Ax=0的基础解系.因
故知ξ
2
,ξ
3
,ξ
4
线性无关,是极大线性无关组,是Ax=0的基础解系,(D)是Ax=0的通解,故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/g0N4777K
0
考研数学二
相关试题推荐
(2001年)已知矩阵且矩阵X满足AXA+BXB=AXB+BXA+E,其中E是3阶单位阵,求X.
(2006年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则
(2005年)设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1+t2,β2=t2+t23,…,βs=t1s+t21,其中t1,t2为实常数。试问t1,t2满足什么条件时,β1β2,…,βs也为Ax=0的一个基础解系。
设f(x)在[a,b]上二阶可导,且f"(x)>0,取xi∈[a,b](i=1,2,…,n)及ki>0(i=1,2,…,n)且满足k1+k2+…+kn=1.证明:f(k1x1+k2x2+…+knxn)≤k1f(x1)+k2f(x2)+…+knf(xn).
设D是由曲线y=sinx+1与三条直线x=0,x=π,y=0所围成的曲边梯形,求D绕x轴旋转一周所围成的旋转体的体积.
顶角为60°,底圆半径为口的正圆锥形漏斗内盛满水,下接底圆半径为b(b<a)的圆柱形水桶(假设水桶的体积大于漏斗的体积),水由漏斗注入水桶,问当漏斗水平面下降速度与水桶水平面上升速度相等时,漏斗中水平面高度是多少?
求y=的极值.
已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么向量α1一α2,α1+2α2—2α3,(α2一α1),α1—3α2+2α3,中,对应齐次线性方程组Ax=0解向量的共有()
随机试题
伪膜性炎多发生于
广告主提供虚假证明文件做广告,应处以的罚款是
小车沿水平方向向右做加速运动,其加速度a0=49.2cm/s2,在小车上有一轮绕O轴转动,转动规律为φ=t2(t以秒计,φ以弧度计)。当t=1s时,轮缘上点A的位置如图所示。如轮的半径r=20cm,求此时点A的绝对加速度aA为( )cm/s2。
碳水化合物的主要生理功能有()。
“人心不同,各如其面”这句话提示教师存教育活动中,应该关注()。
“富贵不能淫,贫贱不能移,威武不能屈”体现的意志品质是()
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
培光中学有靠希望工程捐助的学生不努力学习,这使该校所有的教师感到痛心。如果上述断定为真,则以下哪些断定必然为真?Ⅰ.不能使所有受到希望工程捐助的学生都认真学习,使所有的教师感到痛心。Ⅱ.有些未受到希望工程捐助的学生不努力学习,并不使有些教师感到痛心。
HowdidProfessorJoannaaskJohntomeether?
Formostpeopletheseawasremote,andwiththeexceptionofearlyintercontinentaltravelersorotherswhoearnedalivingfro
最新回复
(
0
)