首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设随机变量x服从参数为λ的指数分布,证明:对任意非负实数s及t,有 P{x≥s+t|X≥s}=P{x≥t}。 (Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
(Ⅰ)设随机变量x服从参数为λ的指数分布,证明:对任意非负实数s及t,有 P{x≥s+t|X≥s}=P{x≥t}。 (Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
admin
2017-03-15
33
问题
(Ⅰ)设随机变量x服从参数为λ的指数分布,证明:对任意非负实数s及t,有
P{x≥s+t|X≥s}=P{x≥t}。
(Ⅱ)设电视机的使用年数X服从参数为0.1的指数分布,某人买了一台旧电视机,求还能使用5年以上的概率。
选项
答案
(Ⅰ)已知随机变量X服从指数分布,对于任意的非负实数,根据指数分布的分布函数F(x)=1-e
-λx
,根据结论 [*] 对任意非负实数s及t,有 [*] 因为X是连续的随机变量,根据分布函数的定义,对任意实数x,有 P{X<x}=P{X≤x}=F(x)。 P{X≥t}=1-P{X<t}=1-P{X≤t}=1-F(t)=1-(1-e
-λt
)=e
-λt
,因此可得P{X≥s+t|X≥s}=P{X≥t}成立。 (Ⅱ)已知电子仪器的使用年数服从指数分布X~e(0.1),则其概率分布函数为 [*] 根据(Ⅰ)的结论, P(X≥s+t}X≥s)=P(X≥t)=e
-λt
, 假设某人买回来的电视机已经用了x年,则它还可以使用五年以上的概率为 P(X≥x+5|X≥5)=P(X≥5)=e
-0.1×5
=e
-0.5
≈0.6065。
解析
转载请注明原文地址:https://kaotiyun.com/show/gNu4777K
0
考研数学一
相关试题推荐
[*]
[*]
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
设f(x)在[a,b]上连续,在(a,b)内可导,fˊ(x)<0,且试证:(1)Fˊ(X)≤0;(2)0≤F(x)-f(x)≤f(a)-f(b)
设f(x)可导,求下列函数的导数:
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
设α1,α2,…,αs均为n维向量,下列结论不正确的是().
设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
设齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均足Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③符Ax=0与Bx=0同解,则秩(A)
f(x)在[a,b]上有二阶连续导数,且满足方程f〞(x)+x2fˊ(x)-2f(x)=0,证明:若f(a)=f(b)=0,则f(x)在[a,b]上恒为0.
随机试题
物力资源的节约是建设节约型社会和节约型企业的重要方面,同时也是贯彻物力资源战略的重大举措。
《蒙娜丽莎》是意大利文艺复兴时期著名画家______的油画作品。()
A出现黄疸B出现发绀C血肌酐升高D突发性低血压E消化道出血胃肠功能衰竭时有
体内缺铁初期最早最可靠的诊断依据是
A.局域网(LAN)和广域网(WAN)B.星型、总线型和环型C.主机、显示器、键盘、鼠标D.运算器和控制器E.系统软件和应用软件计算机网络按其分布的地理范围分为
流行病学医师应首先树立的观点是
下列能够促进胃液分泌的因素是
可用于二级公路路面基层的有()。【2013年真题】
2012年3月,甲县财政局到本县A国有企业进行检查.发现A企业在2011年度有如下行为:(1)2011年8月企业实现利润500万元,为了调整利润以使企业少缴企业所得税.企业会计人员张三将固定资产的折旧方法由直线法改为双倍余额递减法。
盈利能力监管指标不包括()。
最新回复
(
0
)