首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(χ)dχ=g(ξ)∫aξf(χ)dχ.
设f(χ),g(χ)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫ξbg(χ)dχ=g(ξ)∫aξf(χ)dχ.
admin
2019-03-21
35
问题
设f(χ),g(χ)在[a,b]上连续,证明:存在ξ∈(a,b),使得f(ξ)∫
ξ
b
g(χ)dχ=g(ξ)∫
a
ξ
f(χ)dχ.
选项
答案
令φ(χ)=∫
a
χ
f(t)dt∫
b
χ
g(t)dt,显然φ(χ)在[a,b]上可导,又φ(a)=φ(b)=0, 由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0,而φ′(χ)=f(χ)∫
b
χ
g(t)dt+g(χ)∫
a
χ
f(t)dt, 所以f(ξ)∫
b
ξ
g(χ)dχ+g(ξ)∫
a
ξ
f(χ)dχ=0,即f(ξ)∫
ξ
b
g(χ)dχ=g(ξ)∫
a
ξ
f(χ)dχ.
解析
转载请注明原文地址:https://kaotiyun.com/show/ghV4777K
0
考研数学二
相关试题推荐
将分解为部分分式的形式为_________.
设φ(x)=(x2-t)f(t)dt,其中f连续,则φ’’(x)=_________
设f(x,y)为连续函数,则等于()
求下列极限:
证明奇次方程a0x2n+1+a1x2n+…+a2nx+a2n+1=0一定有实根,其中常数a0≠0.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
设χ>0,可微函数y=f(χ)与反函数χ=g(y)满足∫0f(χ)g(t)dt=,求f(χ).
如图,C1和C2分别是y=1/2(1+ex)和y=ex的图形,过点(0,1)的曲线C3是一单调增函数的图形。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为S2
设求f(x)的间断点并判定其类型.
随机试题
以下均不属于正细胞性贫血,除了
下列哪种是腺垂体合成的激素
男,40岁。4个月前发热、腹痛、腹泻,服药1天好转,此后腹泻反复发作,多于劳累及进食生冷食物后,大便5~6次/日,稀便有黏液,有腹痛、里急后重。体检:左下腹压痛。大便镜检WBC20~30/HP、RBC5~10/HP,发现有结肠阿米巴滋养体。此病人最可能
关于医疗机构制剂委托配制的说法正确的是( )。
不符合漏出液特点的是()
观察验槽主要是观察以下( )内容。
ASSOCIATIoNMANAGEMENTPOLICYAllorders,returns,replacements,andcorrespondenceregardingAssociationmaterialsshouldbedi
请阅读下列材料,并按要求作答。请根据上述材料完成下列任务:简要说明《义务教育数学课程标准(2011年版)》对“可能性”的教学要求。(10分)
OnFoodSecurity1.食品安全丑闻频繁发生,引起人们关注2.食品安全问题发生的原因3.我的看法
Inmanycountries,authorityisseldomquestioned,eitherbecauseitishighlyrespected,orbecauseitis(1)_______.Sometime
最新回复
(
0
)