首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求下列微分方程的通解: (Ⅰ) y″-3y′=2-6x; (Ⅱ) y″+y=cosxcos2x.
求下列微分方程的通解: (Ⅰ) y″-3y′=2-6x; (Ⅱ) y″+y=cosxcos2x.
admin
2016-10-26
62
问题
求下列微分方程的通解:
(Ⅰ) y″-3y′=2-6x;
(Ⅱ) y″+y=cosxcos2x.
选项
答案
(Ⅰ)先求相应齐次方程的通解,由于其特征方程为λ
2
-3λ=λ(λ-3)=0,所以通解为 [*](x)=C
1
+C
2
e
3x
. 再求非齐次方程的特解,由于其自由项为一次多项式,而且0是特征方程的单根,所以特解应具形式y
*
(x)=x(Ax+B),代入原方程,得 [y
*
(x)]″-3[y
*
(x)]′=2A-3(2Ax+B)=-6Ax+2A-3B=2-6x. 比较方程两端的系数,得[*],解得A=1,B=0,即特解为y
*
(x)=x
2
.从而,原方程的通解为 y(x)=x
2
+C
1
+C
2
e
3x
,其中C
1
,C
2
为任意常数. (Ⅱ)由于cosxcos2x=[*](cosx+cos3x),根据线性微分方程的叠加原理,可以分别求出y″+y= [*]cosx与y″+y=[*]cos3x的特解y
1
*
(x)与y
2
*
(x),相加就是原方程的特解. 由于相应齐次方程的特征方程为λ
2
+1=0,特征根为±i,所以其通解应为C
1
cosx+C
2
sinx;同时y″+y=[*]cosx的特解应具形式:y
1
*
(x)=Axcosx+Bxsinx,代入原方程,可求得A=0,B=[*].即y
1
*
(x)=[*]sinx. 另外,由于3i不是特征根,所以另一方程的特解应具形式y
2
*
(x)=Ccos3x+Dsin3x,代入原方程,可得C=[*],D=0.这样,即得所解方程的通解为 y(x)=[*]cos3x+C
1
cosx+C
2
sinx,其中C
1
,C
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/hTu4777K
0
考研数学一
相关试题推荐
[*]
利用数学期望的性质,证明方差的性质:(1)Da=0;(2)D(X+a)+DX;(3)D(aX)=a2DX.
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
A是n阶矩阵,且A3=0,则().
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:最多试3把钥匙就能打开门
某地抽样调查结果表明,考生的外语成绩(百分制)近似正态分布,平均成绩为72分,96分以上的占考生总数的2.3%,试求考生的外语成绩在60分到84分之间的概率,如下表:
设齐次线性方程组,其中a≠0,b≠0,n≥2,试讨论a,b为何值时,方程组仅有零解、无穷多组解?在有无穷多解时,求出全部解,并用基础解系表示全部解.
(2005年试题,一)设Ω是由锥面与半球面围成的空间区域,∑是Ω的整个边界的外侧,则
(2008年试题,18)设函数f(x)连续.(I)用定义证明F(x)可导。且F’(x)=f(x);(Ⅱ)设f(x)是周期为2的连续函数,证明也是周期为2的函数.
随机试题
以下所列抗菌药物的给药途径中,最正确的是
CT扫描中常用的FOV是指
瘢痕性类天疱疮在口腔中病损的最常见部位是
潮湿环境下,照明电源的电压不大于()V。
新增付款方式。付款方式编码:01付款方式名称:银行汇票进行票据管理:不需要
以下关于公司型基金的表述中,正确的是()。
将细菌培养物由供氧条件转为厌氧条件,下列过程中会加快的一种是()。
王充认为教育的最高目标是培养“鸿儒”,其有别于儒生、通人、文人的显著特征是
表达式3.6-5/2+1.2+5%2的值是
Whydoestheprofessormention$20bill?
最新回复
(
0
)