首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
admin
2015-06-30
73
问题
设n阶矩阵A满足(aE-A)(bE-A)=O且a≠b.证明:A可对角化.
选项
答案
由(aE-A)(bE-A)=O,得|aE—A|.|bE-A|=0,则|aE-A|=0或者|bE-A|=0.又由(aE-A)(bE=A)=0,得r(aE-A)+r(bE-A)≤n. 同时r(aE-A)+r(bE-A)≥r[(aE-A)-(bE-A)]=r[(a-b)E]=n. 所以r(aE-A)+r(bE-A)=n. (1)若|aE-A|≠0,则r(aE-A)=n,所以r(bE-A)=0,故A=bE. (2)若|bE-A|≠0,则r(bE-A)=n,所以,r(aE=A)=0,故A=aE. (3)若|aE-A|=0且|bE-A|=0,则a,b都是矩阵A的特征值. 方程组(aE-A)X=0的基础解系含有n-r(aE-A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n-r(aE-A)个; 方程组(bE-A)X=0的基础解系含有n-r(bE-A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n-r(bE-A)个. 因为n-r(aE-A)+n-r(bE-A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/hf34777K
0
考研数学二
相关试题推荐
1
二元函数f(x,y)=在点(0,0)处().
设A是n阶可逆矩阵,B是把A的第2列的3倍加到第4列上得到的矩阵,则
设L:+y2=1(x≥0,y≥0),过L上一点作切线,求切线与抛物线所围成面积的最小值。
计算二重积分I=(x2+y2)dxdy,其中区域D由曲线y=,x2+y2=2x及直线x=2所围成。
已知f(x)是微分方程xf′(x)-f(x)=满足初始条件f(1)=0的特解,则f(x)dx=__________.
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
求微分方程x2y’+xy=y2满足初始条件y|x=1=1的特解。
设函数f(x)在[0,+∞]上连续,且f(0)>0,已知经在[0,x]上的平均值等于f(0)与f(x)的几何平均值,求f(x).
随机试题
Iwouldappreciate______itasecret.
内源性凝血系统的始动因子是
tllerapyavailability(TA)
就城市整体而言,经济发达的城市中()占有较高的比重。
建筑施工企业在结构和安装装饰装修施工阶段,应采取以下防止扬尘污染的措施()。
下列各项中,属于营业税应税行为的有()。(2012年真题)
在妇女社会工作中,“妇女为本”的实践原则是指()。
简述幼儿家庭教育的作用。
价值规律的内容是
网络由6个路由器互连而成,路由器之间的链路费用如下图所示,从PC机到服务器的最短路径是(23),通路费用是(24)。(24)
最新回复
(
0
)