首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫xx+f(x)g(t一x)dt=x2ln(1+x).求f(x).
设f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫xx+f(x)g(t一x)dt=x2ln(1+x).求f(x).
admin
2016-06-25
50
问题
设f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若∫
x
x+f(x)
g(t一x)dt=x
2
ln(1+x).求f(x).
选项
答案
令t—x=u,则dt=du,于是 ∫
x
x+f(x)
g(t—x)dt=∫
0
x+f(x)
g(u)du=x
2
ln(1+x). 将等式∫
0
x+f(x)
g(u)du=x
2
ln(1+x)两边对x求导,同时注意到g[f(x)]=x,于是有 [*] =2[ln(1+x)+xln(1+x)一x]+x—ln(1+x)+C =ln(1+x)+2xln(1+x)一x+C. 由于f(x)在x=0处连续,可知[*]=C;又f(0)=0,解得C=0,于是 f(x)=ln(1+x)+2xln(1+x)一x.
解析
转载请注明原文地址:https://kaotiyun.com/show/iBt4777K
0
考研数学二
相关试题推荐
设f(sin2x)=________.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f″(x)|≤b,其中a,b都是非负常数.c为(0,1)内任意一点.(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;(2)证明:|f′(c)|≤2a+b/2.
设f(x)在[0,1]上连续,f(0)=0,∫01f(x)dx=0.证明:存在ξ∈(0,1),使得∫0ξf(x)dx=ξf(ξ).
求幂级数的和函数.
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=________。
在下列各题中,确定函数关系式中所含的参数,使函数情况满足所给的初始条件:x2-y2=C,y|x=0=5
设函数x=f(y)、反函数y=f-1(x)及fˊ(f-1(x)),f〞(f-1(x))都存在,且fˊ(f-1(x))≠0,求证:
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
级数的部分和数列Sn有界是该级数收敛的[].
证明:若一个向量组中有一个部分向量组线性相关,则该向量组一定线性相关.
随机试题
1:2液为
呼吸衰竭急性加重和失代偿期的最常见诱因是
由于人机系统中的可靠性的因素众多且随机变化,因此人的可靠性是不稳定的,则人机系统可靠度采用()来提高。
下列各项表述中,正确的有()。
公司证券是指公司、企业等经济法人为筹集投资资金或与筹集投资资金直接相关的行为而发行的证券,其中()是证明持有者拥有购买发行公司一定数量股份的专有权的凭证。
操作系统只能控制计算机中的软件。()
《中小学教育质量综合评价指标框架(试行)》中的“学业负担状况关键指标”不包括()
欣赏是用眼睛去观察,用耳朵去聆听,用心灵去感悟。请以“学会欣赏”为题,发表一篇演讲。
(2013年真题)战国时期,各诸侯国的立法指导思想主要包括
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得
最新回复
(
0
)