首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2.则函数f(x)在区间(1,2)内( ).
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2.则函数f(x)在区间(1,2)内( ).
admin
2021-01-19
46
问题
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x
2
+y
2
=2.则函数f(x)在区间(1,2)内( ).
选项
A、有极值点,无零点
B、无极值点,有零点
C、有极值点,有零点
D、无极值点,无零点
答案
B
解析
由曲率圆知曲线y=f(x)在点(1,1)处与x
2
+y
2
=2有相同的切线和曲率,从而可求出f′(1)与f″(1).其次由f″(x)不变号可判断函数f(x)在区间[1,2]上的单调性,从而无极值点.最后利用零点定理知f(x)有零点.
由曲率圆的定义知,曲率圆与曲线在点(1,1)处有相同切线与曲率,且在点(1,1)的附近有相同凹向.在x
2
+y
2
=2两边对x求导得x+yy′=0,将y(1)=1代入得到y′(1)=一1.
再次求导得到l+y
′2
+yy″=0,将y(1)=1,y′(1)=一1代入得到y″(1)=一2.由曲率圆的概念知,f′(1)=y′(1)=一l,f″(1)=y″(1)=-2.
又f″(x)不变号,故f″(x)<0,即f(x)是一个凸函数,且在[1,2]上f′(x)单调减少.
于是f′(x)≤f′(1)=一l<0,即在(1,2)上f(x)没有极值点.使用拉格朗日中值定理,得到
f(2)一f(1)=f′(ξ)<一1, ξ∈(1,2),
故f(2)=f′(ξ)+f(1)<-1+1=0,而f(1)=1>0(见图1.2.5.2),由零点定理知f(x)在区间(1,2)内有零点.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/iC84777K
0
考研数学二
相关试题推荐
求
设f(χ)在χ=a处二阶可导,证明:=f〞(a).
设已知线性方程组Ax=b存在两个不同的解。求λ,a;
已知齐次线性方程组其中ai≠0,试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
设函数f(x)连续,且,已知f(1)=1,求∫12f(x)dx的值.
设A=(α1,α2,α3,α4),其中A*为A的伴随矩阵,α1,α2,α3,α4为4维列向量,且α1,α2,α3线性无关,α4=α1+α2,则方程组A*x=0
求曲线的斜渐近线.
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式。证明:aij=一Aij<=>ATA=E,且|A|=一1。
(1)求函数f(x)=的表达式,x≥0;(2)讨论函数f(x)的连续性.
随机试题
患者,男性,68岁,诊断慢性心力衰竭5年。3天前着凉后出现发热.且体重较平时增加近3公斤,护士评估其存在重度水肿,指导患者每日摄盐量不可超过
该企业集团的经营战略是()。牙膏在该公司的产品组合中是()。
工程造价咨询企业信用档案不包括()。
假设杨华夫妇是你的新客户,目前正面临生涯与家庭上的转变,需要金融理财师协助规划。经过初步沟通面谈后,你获得了以下家庭、职业与财务信息:一、案例成员二、收支情况1.收入:杨华每月税前收入为13000元;吴红每月税前收入为8000元。2.支出:为应付
()是建设和巩固国防的基础,是增强民族凝聚力、提高全民素质的重要途径。
下列关于股权投资评估的评估,说法错误的是()。
某单位要从100名报名者中挑选20名献血者进行体检。最不可能被挑选上的是1993年以来已经献过血,或是1995年以来在献血体检中不合格的人。如果上述断定是真的,则以下哪项所言及的报名者最有可能被选上?
设f(x,y)=kx2+2kxy+y2在点(0,0)处取得极小值,求k的取值范围.
宏操作SetValue可以设置
Educatorstodayaremoreandmoreoftenheardtosaythatcomputerliteracyisabsolutelynecessaryforcollegestudents.Manye
最新回复
(
0
)