首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2.则函数f(x)在区间(1,2)内( ).
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2.则函数f(x)在区间(1,2)内( ).
admin
2021-01-19
84
问题
[2009年] 若f″(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x
2
+y
2
=2.则函数f(x)在区间(1,2)内( ).
选项
A、有极值点,无零点
B、无极值点,有零点
C、有极值点,有零点
D、无极值点,无零点
答案
B
解析
由曲率圆知曲线y=f(x)在点(1,1)处与x
2
+y
2
=2有相同的切线和曲率,从而可求出f′(1)与f″(1).其次由f″(x)不变号可判断函数f(x)在区间[1,2]上的单调性,从而无极值点.最后利用零点定理知f(x)有零点.
由曲率圆的定义知,曲率圆与曲线在点(1,1)处有相同切线与曲率,且在点(1,1)的附近有相同凹向.在x
2
+y
2
=2两边对x求导得x+yy′=0,将y(1)=1代入得到y′(1)=一1.
再次求导得到l+y
′2
+yy″=0,将y(1)=1,y′(1)=一1代入得到y″(1)=一2.由曲率圆的概念知,f′(1)=y′(1)=一l,f″(1)=y″(1)=-2.
又f″(x)不变号,故f″(x)<0,即f(x)是一个凸函数,且在[1,2]上f′(x)单调减少.
于是f′(x)≤f′(1)=一l<0,即在(1,2)上f(x)没有极值点.使用拉格朗日中值定理,得到
f(2)一f(1)=f′(ξ)<一1, ξ∈(1,2),
故f(2)=f′(ξ)+f(1)<-1+1=0,而f(1)=1>0(见图1.2.5.2),由零点定理知f(x)在区间(1,2)内有零点.仅(B)入选.
转载请注明原文地址:https://kaotiyun.com/show/iC84777K
0
考研数学二
相关试题推荐
设u=f(x,y,z,t)关于各变量均有连续偏导数,而其中由方程组确定z,t为y的函数,求
设函数y=y(x)由方程ylny一x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性。
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛并求其极限.
设三元线性方程组有通解求原方程组.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设A=(α1,α2,α3,α4),其中A*为A的伴随矩阵,α1,α2,α3,α4为4维列向量,且α1,α2,α3线性无关,α4=α1+α2,则方程组A*x=0
(1)求函数f(x)=的表达式,x≥0;(2)讨论函数f(x)的连续性.
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周得一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
(1994年)设函数f(χ)在闭区间[a,b]上连续,且f(χ)>0,则方程∫aχf(t)dt+∫bχdt=0在开区间(a,b)内的根有
随机试题
李某,男性,34岁。因脑部外伤诱发成疾,头晕健忘,时发头痛,常有一时性神志丧失,伴见四肢抽动,舌质暗,苔薄白,脉弦,中医辨证以下列哪项为主
张义幼年之时,生母死亡,埋葬在一块田地旁边。同族人张为放火烧荒,火苗把张义母亲的坟给烧毁了。张义的同胞姐姐暗中把这件事告诉了他,张义虽然年幼,但悲伤如同在守丧期间一样,长大后也不结婚。后来,他终于手持利刃,杀了张为,以为母亲尽孝,复了仇。依据《大清律例》及
公路工程对土工织物及相关产品的要求主要是()和加筋、防渗和防护作用。
设备工程成本控制的主体是()。
下列关于资源税税收优惠的表述,不正确的有()。
在生产中采用了节省劳动力的新技术后所造成的失业,称之为()。
下列有关诉讼时效的表述中,正确的是()。
下列说法中正确的是()。
PASSAGEONEGiveatitleforthepassage.
A、Ahoneymoonsuitefor$250forthenightandfreebreakfastofChinesestyle.B、Ahoneymoonsuitefor$225forthenightandf
最新回复
(
0
)