首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
admin
2013-04-04
112
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
-α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解.
选项
答案
由α
2
,α
3
,α
4
线性无关及α
1
=2α
2
-α
3
知,向量组的秩r(α
1
,α
2
,α
3
,α
4
)=3,即矩阵A的 秩为3.因此Ax=0的基础解系中只包含一个向量.那么由 (α
1
,α
2
,α
3
,α
4
)[*]=α
1
-2α
2
+α
3
=0. 知,Ax=0的基础解系是(1,-2,1,0)
T
再由β=α
1
+α
2
+α
3
+α
4
=(α
1
,α
2
,α
3
,α
4
)[*]知,(1.1.1.1)
T
是Ax=β的一个特解,故Ax=β的通解是[*],其中k为任意常数.
解析
方程组的系数没有具体给出,应当从解的理论及解的结构人手来求解.
转载请注明原文地址:https://kaotiyun.com/show/iH54777K
0
考研数学一
相关试题推荐
设函数g(x)可微,h(x)=e1+g(x),h’(1)=1,g’(I)=2,则g(1)等于
已知y=f(x)对一切的x满足xf"(x)+3x[f’(x)]2=1一e一x,若f’(x0)=0(x0≠0),则
(96年)设函数f(x)在区间(一δ,δ)内有定义,若当x∈(一δ,δ)时,恒有|f(x)|≤x2,则x=0必是f(x)的
[2018年]下列矩阵中,与矩阵相似的为().
已知矩阵A=,则()
[2013年]设二次型f(x1,x2,x3)=2(a1x1+a2x2+a33x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
设函数y=y(x)由参数方程所确定,求
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
随机试题
供应股骨颈和股骨头血运的血管有
定量研究的准备阶段不需要做的工作是()。
长期使用广谱抗菌药的病人体检时常发现
成人术后常规禁食和禁水的时间是()
材料采购合同双方当事人对产品的质量检测、试验结果发生争议,应按( )的规定,请标准化管理部门的质量监督检验机构进行仲裁检验。
个体在解决问题的过程中表现为搜集或综合信息与知识,运用逻辑规律,缩小解答范围,直至找到唯一正确的解答的认知方式为()认知方式。
大抵是对那些过分关心的回帖有些不堪承受的好笑,她于是在自己的一首诗后的跟帖做了一个不_________的答复:文字只是一种姿态,不要把作者和其笔下的人物作_________的链接。填入画横线部分最恰当的一项是()。
云南是“生物王国”,而且地处大江大河的上游,是江河下游地区的“生态屏障”。曾有一段时间,云南想通过发展旅游等第三产业绕过工业化来发展,最大限度地保护生态环境和民族文化。现在看来,如果工业或者相关产业发展不到位,第三产业就没有服务对象,不仅经济社会发暖受到制
肺心病时,下列哪一种病变最不容易见到
下列对耕地占用税的特点,表述正确的是()。
最新回复
(
0
)