首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2017年] 设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则( )
[2017年] 设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则( )
admin
2019-04-05
51
问题
[2017年] 设二阶可导函数f(x)满足f(1)=f(一1)=1,f(0)=一1,且f"(x)>0,则( )
选项
A、∫
1
-1
f(x)dx>0
B、∫
1
-1
f(x)dx<0
C、∫
0
-1
f(x)dx>∫
1
0
f(x)dx
D、∫
0
-1
f(x)dx<∫
1
0
f(x)dx
答案
B
解析
结合题干和选项,可选取x∈(一1,0)和x∈(0,1)讨论,由于函数f(x)
二阶可导,且f"(x)>0,可知f(x)在x∈(一1,1)内连续,故f(x)dx=∫
0
-1
f(x)dx+∫
1
0
f(x)dx.另一种方法是选取特殊函数进行求解.
解一 在x∈(0,1)内,记G(x)=
,则G'(x)=
,而
=f'(ξ),ξ∈(0,1),所以G(x)在(0,1)内递增,G(x)<G(1),即f(x)<2x一1,
x∈(0,1),∫
1
0
f(x)dx<∫
1
0
(2x—1)dx=0.
同理,当x∈(一1,0)时,∫
0
-1
f(z)dx<0.
故∫
1
-1
f(x)dx=∫
0
-1
f(x)dx+∫
1
0
f(x)dx<0.仅(B)入选.
解二 取特殊函数法.选取符合题设条件的函数,
f(x)=2x
2
一l,显然∫
1
-1
f(x)dx<0(见图1.2.1.1中阴影部分).
由图1.2.1.1还可知,
∫
0
-1
f(x)dx=∫
1
0
f(x)dx,排除(C)和(D).
转载请注明原文地址:https://kaotiyun.com/show/iWV4777K
0
考研数学二
相关试题推荐
交换累次积分I的积分次序:
求下列函数的导数y′:(Ⅰ)y=arctan:(Ⅱ)y=sinχ.
求曲线y=+ln(1+ex)的渐近线方程.
求极限
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设连续函数f(χ)满足∫0χtf(χ-t)dt-1-cosχ,求f(χ)dχ.
求极限
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dtG(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=______.
[2009年]设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
随机试题
试述太平天国农民战争的意义。
阅读《答李翊书》中的一段文字,然后回答问题。气,水也;言,浮物也。水大而物之浮者大小毕浮。气之与言犹是也,气盛则言之短长与声之高下者皆宜。……“气”和“言”指的是什么?
关于犯罪嫌疑人、被告人逃匿、死亡案件违法所得的没收程序,下列哪一说法是正确的?(2012年试卷2第38题)
以下对爆破作业描述不正确的是()。(1)雷雨季节宜采用电雷管起爆法起爆。(2)炸药反应不完全时,不会引起有毒气体含量增加。(3)同一爆破网络应使用同厂、同批、同型号的电雷管。(4)处理盲炮时进行安全警戒。
行业的成长实际上是指( )。
企业会计方法和程序前后各期( )。
某公司正处于快速发展时期,急需高素质人才加盟,为此人力资源部门和多家猎头公司签订了合作协议,开始进行大张旗鼓的人才招募选拔。该公司人才招募选拔的流程是:猎头公司推荐候选人,候选人资料经人力资源部经理筛选后交总经理审阅,由总经理决定是否面试,再由人力资源部和
根据《企业所得税法》及其实施条例的有关规定,不得提取折旧的固定资产是()。
出境旅游领队带领旅游团入中国境的服务包括()
(2015·河南)既是课程标准的具体化,也是师生进行教学的主要依据的是教科书。()
最新回复
(
0
)