首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
admin
2021-02-25
53
问题
设f(x)在(-∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=f(x)/x在(-∞,0)和(0,+∞)都是单调增加的.
选项
答案
[*].令 g(x)=xf’(x)-f(x),g(0)=-f(0)=0, g’(x)=f’(x)+xf”(x)-f’(x)=xf”(x),g’(0)=0, 当x<0时g’(x)<0;当x>0时g’(x)>0.故g(0)=0是g(x)的最小值,所以当x≠0时,g(x)>g(0)=0,从而φ’(x)>0,即φ(x)在(-∞,0)和(0,+∞)都是单调增加的.
解析
本题考查函数单调性的判定方法,只需判断φ’(x)>0即可.
转载请注明原文地址:https://kaotiyun.com/show/ii84777K
0
考研数学二
相关试题推荐
设A是n阶可逆阵,其每行元素之和都等于常数a,证明:(1)a≠0;(2)A-1的每行元素之和均为.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设有摆线x=φ(t)=t—sint,y=ψ(t)=1—cost(0≤t≤2π)的第一拱L,则L绕x轴旋转一周所得旋转面的面积S=________.
(2013年)设曲线L的方程为y=(1≤χ≤e)(Ⅰ)求L的弧长;(Ⅱ)设D是由曲线L,直线χ=1,χ=e及χ轴所围平面图形.求D的形心的横坐标.
(2003年试题,九)有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图1—6—1),容器的底面圆的半径为2m,根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以,mn2/min的速率均匀扩大(假设注入
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间(1/2,1)内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
设当x→0时,(1一cosx)In(1+x2)是比xsinxn高阶的无穷小,而xsinxn是tt(ex2一1)高阶的无穷小,则正整数n等于()
设有一薄板,其边沿为一抛物线,如图3—6所示,若顶点恰在水面上,试求薄板所受的静压力,并求将薄板下沉多深,压力加倍?
计算I=x2e-y2dxdy,其中D是以O(0,0),A(1,1),B(-1,1)为顶点的三角形区域.
随机试题
机体的内环境指的是
自然人甲与乙订立借款合同,其中约定甲将自己的一辆汽车作为担保物让与给乙。借款合同订立后,甲向乙交付了汽车并办理了车辆的登记过户手续。乙向甲提供了约定的50万元借款。一个月后,乙与丙公司签订买卖合同,将该汽车卖给对前述事实不知情的丙公司并实际交付给
具有择时能力的基金经理一般在熊市时降低现金头寸或提高基金组合的β值。()
金融制度创新使商业银行与投资银行业务领域的界限()。
锌是人体必需的微量元素,被称为“生命之花”,很多家长开始意识到锌对孩子成长的重要性,热衷于给孩子补锌。殊不知,人体需要的锌并不多,补锌过量会造成严重危害。这说明()。
在著名的优质麦产区山东省兖州市,国际粮商与改制后的基层粮管所合作,利用其收储网络大量收购小麦、玉米等粮源,形成具有一定规模的收储网络。在不断复制这种模式的同时,在国内企业已经进驻的地方,国际粮商开设面粉加工企业,利用掌握的优质粮源以及低价策略挤压国内企业生
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirwork,theymustreadletters,reports,tradepublicatio
DothefollowingstatementsagreewiththeinformationgiveninReadingPassage1?Inboxes10-13onyouranswersheet,writeTR
Thefineneedlesareused______.Whyaresometattooistscalled"responsible"?
RaisingWiseConsumersAlmostanyonewithaprofitmotiveismarketingtoinnocents.Helpyourkidsunderstandit’sOKnott
最新回复
(
0
)