首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3),证明: 存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3),证明: 存在ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0.
admin
2021-10-18
90
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3),证明:
存在ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,F’(x)=f(x),∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0<c<2.因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,m≤[f(2)+f(3)]/2≤M,由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[f(2)+f(3)]/2,即f(2)+f(3)=2f(x
0
).于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)∈(0,3),ξ
2
∈(c,x
0
)∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0,
解析
转载请注明原文地址:https://kaotiyun.com/show/iky4777K
0
考研数学二
相关试题推荐
周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则y=f(x)在点(5,f(5))处的切线斜率为()
设f(x+1)=af(x)总成立,f’(0)=b,a≠1,b≠1为非零常数,则f(x)在点x=1处
由方程听确定的函数z=z(x,y)在点(1,0,一1)处的全微分dz=_________.
求下列积分。设函数f(x)在[0,1]连续且∫12f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
曲线y=χ(χ-1)(2-χ)与χ轴所围成的图形面积可表示为().
设且f"(0)存在,求a,b,c。
设ε为f(x)=arctanx在[0,a]上使用微分中值定理的中值,则为()。
计算二重积分,其中积分区域D是由抛物线y=x2和圆x2+y2=2及x轴在第一象限所围成的平面区域。
设f(x)=∫0xdt∫0ttln(1+u2)du,g(x)=(1-cost)dt,则当x→0时,f(x)是g(x)的().
设f(x)和φ(x)在(一∞,+∞)上有定义,f(x)为连续函数,且f(x)≠0,φ(x)有间断点,则()
随机试题
膜壁
献身型是()职业道德的境界。
浆液性腺癌的特异性标志物:卵泡膜细胞瘤的特异性标志物:
A.含氟牙膏B.氟饮水C.氟盐D.氟片E.氟滴剂
根据《处方管理办法》,下列关于处方限量的说法,正确的有()
八纲辨证指表里、寒热、虚实和
使用账务处理系统时,每年的年初数均需重新进行系统初始操作。()
2009年2月,家住甲市A区的赵刚向家住甲市B区的李强借了5000元,言明2010年2月之前偿还。到期后赵刚一直没有还钱。2010年3月,李强找到赵刚家追讨该债务,发生争吵。赵刚因其所牵宠物狗受惊,遂对李强说:“你不要大声喊,狗会咬你”。李强不理,仍然叫骂
下列属于信贷客户的信贷动机的是()。
Youcanactuallyseethedeeratcloserangewhiledrivingthoroughthatarea.Theitalicizedphrasemeans_____.(2010-77)
最新回复
(
0
)