首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
没A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2分别是A的对应于λ1,λ2的特征向量,证明ξ1+ξ2不是A的特征向量.
没A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2分别是A的对应于λ1,λ2的特征向量,证明ξ1+ξ2不是A的特征向量.
admin
2019-07-22
64
问题
没A为n阶矩阵,λ
1
和λ
2
是A的两个不同的特征值,ξ
1
,ξ
2
分别是A的对应于λ
1
,λ
2
的特征向量,证明ξ
1
+ξ
2
不是A的特征向量.
选项
答案
由Aξ
1
=λ
1
ξ
1
,Aξ
2
=λ
2
ξ
2
,有A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=λ
1
ξ
1
+λ
2
ξ
2
. 若ξ
1
+ξ
2
是A的特征向量,则应存在数λ,使A(ξ
1
+ξ
2
)=λ(ξ
1
+ξ
2
) =λξ
1
+λξ
2
,从而λξ
1
+λξ
2
=λ
1
ξ
1
+λ
2
ξ
2
,即(λ—λ
1
)ξ
1
+(λ—λ
2
)ξ
2
=0. 因为ξ
1
,ξ
2
线性无关,所以λ=λ
1
=λ
2
,这与λ
1
≠λ
2
矛盾. 因此,ξ
1
+ξ
2
不是A的特征向量.
解析
本题主要考查矩阵特征值、特征向量的概念和属于不同特征值的特征向量线性无关这一知识点.利用反证法可证明本题.
转载请注明原文地址:https://kaotiyun.com/show/imN4777K
0
考研数学二
相关试题推荐
设χy=χf(z)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是χ,y的函数.证明:[χ-g(z)]=[y-f(z)]
设α为n维非零列向量,A=E-ααT.(1)证明:A可逆并求A-1;(2)证明:α为矩阵A的特征向量.
,αTβ=aibi≠0,求A的全部特征值,并证明A可以对角化.
设C=为正定矩阵,令P=,(1)求PTCP;(2)证明:D-BA-1BT为正定矩阵.
设A,B都是n阶矩阵,且存在可逆矩阵P,使得AP=B,则().
设n阶矩阵A与对角矩阵合同,则A是().
n阶实对称矩阵A正定的充分必要条件是().
证明:当χ>0时,
设f(χ)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf′(ξ)-f(ξ)=f(2)-2f(1).
随机试题
审美经验
某单位不仅设置独立的信息管理中心,而且各职能部门、分厂和车间之间也有信息联系。这种信息管理的组织结构模式是
能引起横膈位置下移的疾病是
具有养阴生津功效的药物是
健康幼儿的呼吸次数是
两个二进制0111和0110相加的结果是()。
依据《合同法》规定,当事人应当承担违约责任的情形是( )。
下列选项中,属于法律、行政法规设定的海关行政许可项目有:
甲以自己的房屋一套为债权人乙设定抵押并办理抵押登记。之后,甲又以该房屋为债权人丙设定抵押,但一直拒绝办理抵押登记。三个月后,甲擅自将房屋转让给丁并办理了过户登记。则下列表述正确的是()。
BusinessesThriveonTransparencyStakeholdersscrutinizebusinessactivity.Corporatetransparencyischangingtheface
最新回复
(
0
)