首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
admin
2021-01-19
67
问题
设f(x)是区间[0,+∞)上具有连续导数的单调增函数,且f(0)=1。对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体。若该旋转体的侧面积在数值上等于其体积的2倍,求函数f(x)的表达式。
选项
答案
旋转体的体积V=π∫
0
t
f
2
(x)dx, 侧面积S=2π∫
0
t
f(x)[*]dx, 由题设条件知 ∫
0
t
f
2
(x)dx=∫
0
t
f(x)[*]dx, 上式两端对t求导得f
2
(t)=f(t)[*] 即y’=[*] 由分离变量法解得ln(y+[*])=t+C
1
, 即y+[*]=Ce
t
。 将y(0)=1代入得C=1,故 y+[*]=e
t
,y=1/2(e
t
+e
-t
)。 于是所求函数为 y=f(x)=1/2(e
x
+e
-x
)。
解析
转载请注明原文地址:https://kaotiyun.com/show/iq84777K
0
考研数学二
相关试题推荐
证明极限不存在.
设f(x)在[a,b]上连续,证明:
设z=z(x,y)是由方程x2+y2一z=φ(x+y+z)所确定的函数,其中φ具有二阶导数且φ’≠一1。记μ(x,y)=。
已知A是n阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
证明:∫0πxasinxdx.,其中a>0为常数.
以yOz坐标面上的平面曲线段y=f(z)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为l6πcm3,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm3/s增大,试求曲线y=f(z)的方程.
设其中函数f,g具有二阶连续偏导数,求
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
当0≤χ≤1时,0≤[*]≤lnn(1+χ)≤χn.积分得0≤[*]由迫敛定理得[*]
随机试题
一般在满足油井产能要求时,应采取()、长冲程、慢冲次的原则。
人在摄取混合食物时,其呼吸商通常为
悬空式桥体龈面与牙槽嵴顶黏膜的距离至少是
劳动争议案件中存在劳动关系的用人单位与职工称为()。
( )经常会使用“矛盾处方”、“维持症状”、“奇迹提问”等方法作为解决问题的焦点。
年营业收入1000万,直接经营成本400万,折旧50万,税率33%,求企业经营性现金流量净额。()
GlobalWarmingControversyVocabularyandExpressionscontroversyemissionsnon-committalprojectionscur
Chinesepeopleareusuallydescribedashospitable,generousandamiable.Theunderlinedpartmeans______.
Volunteersareourheartandsoul.Pleasecomeandhelpusbuildhomesfor【B1】______low-incomefamilies.Thereisnoexperience
A、It’smoreconvenienttomakechangeswhenusingacomputer.B、Acomputeruseslesspaper.C、It’slessexpensivetousethecom
最新回复
(
0
)