首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元.如果制得的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问c取值时,用第2种方法较好?
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元.如果制得的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问c取值时,用第2种方法较好?
admin
2017-04-19
30
问题
设某种元件的寿命为随机变量且服从指数分布.这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为c和2c元.如果制得的元件寿命不超过200小时,则须进行加工,费用为100元.为使平均费用较低,问c取值时,用第2种方法较好?
选项
答案
记用第一、第二种方法制得的元件的寿命分别为X、Y,费用分别为ξ、η,则知X、Y的概率密度分别为: [*] ∴Eξ=(c+100)P(X≤200)+c.P(X>200)=c+100p(X≤200),Eη=(2c+100)P(Y≤200)+2cP(Y>200)=2c+100P(Y≤200),于是Eη一Eξ=c+100.[P(Y≤200)一P(X≤200)]=c+100[*],可见c<[*]时,Eη<Eξ,用第2种方法较好(平均费用较低).
解析
转载请注明原文地址:https://kaotiyun.com/show/j5u4777K
0
考研数学一
相关试题推荐
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
被积函数的分子与分母同乘以一个适当的因式,往往可以使不定积分容易求,用这种方法求下列不定积分:
设幂级数anxn在(-∞,+∞)内收敛,其和函数y(x)满足y"-2xy’-4y=0,y(0)=0,y’(0)=1.求y(x)的表达式.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
设(X1,X2,…,Xn)(n≥2)为标准正态总体,X的简单随机样本,则().
由结论可知,若令φ(x)=xf(x),则φˊ(x)=f(x)+xfˊ(x).因此,只需证明φ(x)在[0,1]内某一区间上满足罗尔定理的条件.令φ(x)=xf(x),由积分中值定理可知,存在η∈(0,1/2)使[*]
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,(I)求相继两次故障之间时间间隔T的概率分布;(Ⅱ)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q.
设函数f(x)对任意x均满足等式f(1+x)=af(x),且fˊ(0)=b,其中a,b为非零常数,则().
判别级数的敛散性,若收敛求其和.
根据阿贝尔定理,已知在某点x1(x1≠x0)的敛散性,证明该幂级数的收敛半径可分为以下三种情况:(1)若在x1处收敛,则收敛半径R≥|x1一x0|;(2)若在x1处发散,则收敛半径R≤|x1一x0|;(3)若在x1处条件收敛,则收敛半径R=|x1一x
随机试题
可转位螺旋齿可换头立铣刀采用的是模块式结构。()
A.右心室B.左心房C.冠状窦D.门静脉E.下腔静脉肝的血液经肝静脉注入()
26岁孕妇,妊娠足月,入院待产。夜间呼唤护士,自述感觉胎动过频。此时最不恰当的处理是
产品生产成本包括()。
申请H股发行与上市,必须保证无论何时公众人士持有的股份应占发行人已发行股本的至少()。
()主要是为客户报批项目可行性研究报告时,向国家有关部门表明银行同意贷款支持项目建设的文件。
2013年3月,赵先生参加了某旅行社组织的旅游团前往桂林旅游。临行前接受组团社的推荐,购买了旅游意外保险。在乘火车前往桂林途中,火车车窗的玻璃突然被一块飞来的石头击碎,将靠窗而坐的赵先生扎伤。事后,赵先生向旅行社索赔。旅行社说,此事故纯属意外,不是旅行社的
我国《刑法》第385条第1款规定:“国家工作人员利用职务上的便利,索取他人财物的,或者非法收受他人财物,为他人谋取利益的,是受贿罪。”对该规定中“为他人谋取利益”的正确理解有()。
若网络的各个节点通过中继器连接成一个闭合环路,则称这种拓扑结构称为()。
Whichofthefollowingbestexplainsthemeaningof"Nooneshallstopme"?
最新回复
(
0
)