首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
实数a,b,c成等比数列. (1)关于χ的一元二次方程aχ2-2bχ+c=0有两相等实根; (2)lga,lgb,lgc成等差数列。
实数a,b,c成等比数列. (1)关于χ的一元二次方程aχ2-2bχ+c=0有两相等实根; (2)lga,lgb,lgc成等差数列。
admin
2016-04-08
1
问题
实数a,b,c成等比数列.
(1)关于χ的一元二次方程aχ
2
-2bχ+c=0有两相等实根;
(2)lga,lgb,lgc成等差数列。
选项
A、条件(1)充分,但条件(2)不充分.
B、条件(2)充分,但条件(1)不充分.
C、条件(1)、(2)单独都不充分,但条件(1)、(2)联合起来充分.
D、条件(1)、(2)都充分.
E、条件(1)、(2)单独都不充分,条件(1)、(2)联合起来也不充分.
答案
A
解析
对于条件(1),χ的一元二次方程aχ
2
-2bχ+c=0有两相等实根
△=0
即4b
2
-4ac=0,
b=ac.若取b=c=0.
显然b
2
=ac,但a,b,c并不构成等比数列,因此条件(1)充分.
对于条件(2),可得a>0,b>0,c>0,且lgb=
,即b=ac.
且a,b,c均不为零,因此a,b.c成等比数列,故选A.
转载请注明原文地址:https://kaotiyun.com/show/jOqa777K
本试题收录于:
管理类联考综合能力题库专业硕士分类
0
管理类联考综合能力
专业硕士
相关试题推荐
s市环保监测中心的统计表明,2009年空气质量为优的天数达到了150天,比2008年多出22天;二氧化硫、一氧化碳、二氧化氮、可吸入颗粒物四项污染物浓度平均值,与2008年相比分别下降了21.3%、25.6%、26.2%、15.4%。S市环保负责人指出,这
东宇大学公开招聘3个教师职位,哲学学院、管理学院和经济学院各一个。每个职位都有分别来自南山大学、西京大学、北清大学的候选人。有位“聪明”人士李先生对招聘结果做出了如下预测:如果哲学学院录用北清大学的候选人,那么管理学院录用西京大学的候选人;
如图,一个储物罐的下半部分是底面直径与高均是20m的圆柱形,上半部分(顶部)是半球形,已知底面与顶部的造价是400元/m2,侧面的造价是300元/m2,该储物罐的造价是(π=3.14)
在一条与铁路平行的公路上有一行人与一骑车人同向行进,行人速度为3.6千米/小时,骑车人速度为10.8千米/小时。如果一列火车从他们的后面同向匀速驶来,它通过行人的时间是22秒,通过骑车人的时间是26秒,则这列火车的车身长为()米。
若正数a,b满足ab=a+b+3,则ab的取值范围是().
停车场内有85辆奔驰牌车,131辆福特牌车,615辆本田牌车,一名中奖者获得在这个停车场内抽中其中一辆车的奖励,那么,这名中奖者得到奔驰车、福特车或本田车的概率是()
某班学生45人,期末考试全班平均成绩90分,85分以上(含85分)学生的平均成绩95分,不足85分的学生的平均成绩是80分,则85分以上(85分)学生的人数为()
服装业是劳动密集型产业,生产服装需要雇佣一大批人。汽车业是资金密集型产业,大量资本投入到由相对少的人操纵的复杂设备上,如果不考虑附加收入的话,一个普通的美国服装工人在1979年的工资是一个普通的汽车工人的46%。下面哪项如果正确,可能是造成汽车工人和
多项式x42-6x3+ax2+bx+4是一个二次三项式的完全平方式.(1)a=5,b=12(2)a=13,b=-12
美国联邦所得税是累进税,收入越高,纳税率越高。美国有的州还在自己管辖的范围内,在绝大部分出售商品的价格上附加7%左右的销售税。如果销售税也被视为所得税的一种形式的话,那么,这种税收是违背累进原则的。以下哪项,如果为真,最能加强题干的议论?
随机试题
等离子弧也可切割各种非金属材料。
患者感寒后出现喘逆上气,胸胀而痛,鼻煽,咳吐黄稠痰,恶寒无汗,身痛口渴,苔黄质红,脉浮数。应诊断为
A、温肾纳气B、调经止痛C、散结消滞D、杀虫疗癣E、燥湿化痰川楝子除行气止痛外,又能()
溃疡性结肠炎的临床表现应除外
污泥经浓缩处理后,含水率仍然很高,一般在()左右,体积仍很大。
通过直接缩小计税依据的方式实现的减税免税是( )。
第二反抗期的主要表现是()。
Doyoubelievethatonlyboysdowellinscience?Doesitseemtoyouthat(31)havebettervocabulariesthanboys?(32)yourop
Fromchildhoodtooldage,wealluselanguageasameansofbroadeningourknowledgeandtheworldaboutus.Whenhumansfirst
Imagine,JohnLennon’smostfamoussong,wasrecentlyvoted"Britain’sfavouritesongofalltime".It’sanidealistsongab
最新回复
(
0
)