已知α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,一1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5),问当a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?

admin2017-08-16  17

问题 已知α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,一1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5),问当a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?

选项

答案设β=x1α1+x2α2+x3α3+x4α4,不难求得有线性方程组 [*] 对这个线性方程组的增广矩阵进行初等变换 [*] 若a+1=0而b≠0,则方程组无解.因此当a=一1,b≠0时,β不能表示为α1,α2,α3,α4的线性组合.

解析
转载请注明原文地址:https://kaotiyun.com/show/jiyR777K
0

最新回复(0)