首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2012年)已经知A=,二次型f(χ1,χ2,χ3)=χT(ATA)χ的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换χ=Qy将f化为标准形.
(2012年)已经知A=,二次型f(χ1,χ2,χ3)=χT(ATA)χ的秩为2. (Ⅰ)求实数a的值; (Ⅱ)求正交变换χ=Qy将f化为标准形.
admin
2016-05-30
82
问题
(2012年)已经知A=
,二次型f(χ
1
,χ
2
,χ
3
)=χ
T
(A
T
A)χ的秩为2.
(Ⅰ)求实数a的值;
(Ⅱ)求正交变换χ=Qy将f化为标准形.
选项
答案
(Ⅰ)因为r(A
T
A)=r(A),对A施以初等行变换 [*] 可见当a=-1时,r(A)=2,所以a=-1. (Ⅱ) 由于a=-1,所以A
T
A=[*].矩阵A
T
A的特征多项式为 |λE-A
T
A|=[*] =(λ-2)(λ
2
-6λ)=λ(λ-2)(λ-6), 于是得A
T
A的特征值为λ
1
=2,λ
2
=6,λ
3
=0. 对于λ
1
=2,由求方程组(2E-A
T
A)χ=0的一个非零解,可得属于λ
1
=2的一个单位特征向量[*](1,-1,0)
T
; 对于λ
2
=6,由求方程组(6E-A
T
A)χ=0的一个非零解,可得属于λ
2
=6的一个单位特征向量[*](1,1,2)
T
; 对于λ
3
=0,由求方程组(A
T
A)χ=0的一个非零解,可得属于λ
3
=0的一个单位特征向量[*](1,1,-1)
T
. 令矩阵Q=[*] 则f在正交变换χ=Qy下的标准形为f=2y
1
2
+6y
2
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/k734777K
0
考研数学二
相关试题推荐
A为四阶方阵,方程组AX=0的通解为x=k1(1,0,1,0)T+k2(0,0,0,1)T,A的伴随矩阵为A*,则秩(A*)*=().
已知三阶矩阵,记它的伴随矩阵为A*,则三阶行列式________.
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
以y=C1ex+C2cos2x+C3sin2x(C1,C2,C3为任意常数)为通解的微分方程是________.
函数y=Cx+(其中C为任意常数)对微分方程而言().
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
设an=∫0π/4tannxdx,证明:对任意常数λ>0,级数收敛.
设函数f(x)在(-∞,+∞)内具有一阶连续导数,L是上半平面(y>0)内的有向光滑曲线,其起点为点(a,b),终点为点(c,d),记当ab=cd时,求I的值.
若在x=1处连续,求a的值。
随机试题
国际法的基本特点。
叩诊确定肝上界时体表标志是
既是抗原呈递细胞,又是免疫应答细胞的是可以杀伤肿瘤细胞无需MHC限制性的是
投资项目社会评价中韵互适性分析主要是考察项目与当地社会环境的相互适应关系,互适性分析内容包括()
人们常说“一寸光阴一寸金,寸金难买寸光阴”,这说明了()。
已知直线l的斜率为1/6,且和两坐标轴围成面积为3的三角形,则l的方程为().
1919年5月爆发的五四运动具备了哪些新的历史特点,使之成为中国革命的新阶段即成为新民主主义革命阶段的开端的()
Withunfamiliarhumanbeings,whenweacknowledgetheirhumanness,wemustavoidstaringatthem,andyetwemustalsoavoidign
Accordingtothelecture,whatis"bartering"?
Thefunnythingabouthowabankworksisthatitfunctionsbecauseofourtrust.Wegiveabankourmoneytokeepitsafeforu
最新回复
(
0
)